Molnár, Tamás (2023) Application of satellite image series in the Hungarian forest disturbance monitoring. Doktori értekezés, Soproni Egyetem.
PDF
Értekezés.pdf Download (8MB) |
|
PDF
Tézisfüzet HU.pdf Download (269kB) |
|
PDF
Theses EN.pdf Download (263kB) |
|
PDF
Értekezés.Text.Marked.pdf Download (8MB) |
Absztrakt (kivonat)
Application of satellite image time series in the Hungarian forest disturbance monitoring In my PhD thesis, a novel approach was created to utilize high-resolution Sentinel-2 satellite imagery of the European Space Agency and Google Earth Engine cloud computing. The processing, analysing, and visualization of vegetation and water index (NDVI, NDVI change standardized NDVI, etc.) maps and charts derived from satellite images took place online, in the cloud, to ensure the detection of forest disturbances in the three Hungarian study sites (Nagyerdő of Debrecen, Farkas-erdő of Sárvár, and Central Bükk) for the period 2017 – 2020. My results indicated that the combined dataset of satellite imagery and ground-based reports provided suitable input for forest damage monitoring conducted with GEE. The applied method successfully identified different types of forest damage on Z NDVI maps in the surveyed period with 78 % Total Accuracy
Mű típusa: | Disszertáció (Doktori értekezés) |
---|---|
Kulcsszavak: | forest monitoring, satellite imagery, Sentinel-2, cloud computing, Google Earth Engine, Machine Learning |
Doktori iskola: | Erdőmérnöki Kar (Sopron) > Roth Gyula Erdészeti és Vadgazdálkodási Tudományok Doktori Iskola |
Tudományterület / tudományág: | agrártudományok > erdészeti és vadgazdálkodási tudományok |
Angol cím: | Application of satellite image series in the Hungarian forest disturbance monitoring |
Témavezető(k): | Témavezető neve Beosztás, tudományos fokozat, intézmény Email Király, Dr. Géza egyetemi docens SOE NEM RÉSZLETEZETT Somogyi, Dr. Zoltán tudományos tanácsadó, ERTI NEM RÉSZLETEZETT |
EPrint azonosító (ID): | 862 |
Publikációban használt név : | Molnár, Tamás |
A mű MTMT azonosítója: | 33854485 |
Dátum: | 30 máj 2023 07:33 |
Utolsó módosítás: | 20 júl 2023 11:38 |
URI: | http://doktori.uni-sopron.hu/id/eprint/862 |
Actions (login required)
Tétel nézet |