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5. sz. melléklet 

 

NYILATKOZAT 

 

 

Alulírott Molnár Tamás jelen nyilatkozat aláírásával kijelentem, hogy az Application of satellite image 

time series in the Hungarian forest disturbance monitoring című PhD értekezésem önálló munkám, 

az értekezés készítése során betartottam a szerzői jogról szóló 1999. évi LXXVI. törvény szabályait, 

valamint a Roth Gyula Erdészeti és Vadgazdálkodási Tudományok Doktori Iskola által előírt, a doktori 

értekezés készítésére vonatkozó szabályokat, különösen a hivatkozások és idézések tekintetében.1 

 

Kijelentem továbbá, hogy az értekezés készítése során az önálló kutatómunka kitétel tekintetében 

témavezetőimet, illetve a programvezetőt nem tévesztettem meg. 

 

Jelen nyilatkozat aláírásával tudomásul veszem, hogy amennyiben bizonyítható, hogy az értekezést 

nem magam készítettem, vagy az értekezéssel kapcsolatban szerzői jogsértés ténye merül fel, a 

Soproni Egyetem megtagadja az értekezés befogadását. 

 

Az értekezés befogadásának megtagadása nem érinti a szerzői jogsértés miatti egyéb (polgári jogi, 

szabálysértési jogi, büntetőjogi) jogkövetkezményeket. 

 

Kelt Sopron, 2023. május 12. 

 

 

doktorjelölt 

1 1999. évi LXXVI. tv. 34. § (1) A mű részletét –  az átvevő mű jellege és célja által indokolt terjedelemben és 
az eredetihez híven  –  a forrás, valamint az ott megjelölt szerző megnevezésével bárki idézheti. 

36. § (1) Nyilvánosan tartott előadások és más hasonló művek részletei, valamint politikai beszédek 

tájékoztatás céljára –  a cél által indokolt terjedelemben  –  szabadon felhasználhatók. Ilyen felhasználás 

esetén a forrást –  a szerző nevével együtt  –  fel kell tüntetni, hacsak ez lehetetlennek nem bizonyul. 
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Abstract 

Remote sensing enables constant monitoring of the state of our forests all over the world. It 

has constantly increasing importance in forest state monitoring. Since forest damage has 

become more frequent in Hungary in the last few decades, remote sensing offers a powerful, 

rapid, and cost-effective tool for monitoring disturbances in forest health.  

In this PhD thesis, a novel approach was created to utilize high-resolution Sentinel-2 

satellite imagery of the European Space Agency and Google Earth Engine (GEE) cloud 

computing. The processing, analysing, and visualization of vegetation and water index ( 

Normalized Difference Vegetation Index (NDVI), NDVI change (NDVIch), standardized NDVI (Z 

NDVI), Normalized Difference Water Index (NDWI), Enhanced Vegetation Index (EVI))  maps 

and charts derived from satellite images took place online, in the cloud, to ensure the 

detection of forest disturbances in the three Hungarian study sites (Nagyerdő of Debrecen, 

Farkas-erdő of Sárvár, and Central Bükk) for the period 2017 – 2020.  

My results indicated that the combined dataset of satellite imagery and ground-based 

reports provided suitable input for forest damage monitoring conducted with GEE. The 

applied method successfully identified different types of forest damage on Z NDVI maps in the 

surveyed period with 78 % Total Accuracy 

Keywords: forest monitoring, satellite imagery, Sentinel-2, cloud computing, Google Earth 

Engine, Machine Learning 
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Kivonat 

A távérzékelés segítésével folyamatosan nyomon követhetjük az erdők állapotát világszerte. 

Egyre fontosabb az erdőmonitoringban betöltött szerepe is. Mivel az erdőkárok gyakorisága 

megnőtt Magyarországon az elmúlt évtizedekben, az űrfelvételek felhasználása hatékony, 

gyors és olcsó eszközzé vált az erdők egészségi állapotával összefüggő bolygatások 

monitorozására. 

Ebben a PhD értekezésben egy új módszertant készítettem, ami az Európai 

Űrügynökség nagyfelbontású Sentinel-2 űrfelvételeinek és a Google Earth Engine (GEE) 

felhőrendszerének felhasználásán alapul. Az erdőállapotot leíró, műholdképekből előállított 

vegetációs és vízindex (Normalizált Vegetációs Index (NDVI), NDVI változás (NDVIch), 

standardizált NDVI (Z NDVI), Normalizált Víz Index (NDWI), Továbbfejlesztett Vegetációs Index 

(EVI)) térképek feldolgozása, elemzése és megjelenítése online történik a felhőben, ami az 

erdőkárok kimutatására szolgál három hazai mintaterületen (Debreceni Nagyerdő, Sárvári 

Farkas-erdő és Központi-Bük) 2017 és 2020 közötti időszakra. 

Az eredményeimmel sikeresen kimutattam, hogy a távérzékelt űrfelvételek és a terepi 

adatok kombinációja megfelelő bemenetet biztosít a Google Earth Engine-ben futtatott 

erdőmonitoring rendszernek. Az alkalmazott módszertannal sikeresen azonosítottam 

különféle erdőkárokat a Z ZNDVI térképeken átlagosan 78%-os teljes pontossággal. 

Kulcsszavak: erdőmonitoring, űrfelvétel, Sentinel-2, felhő rendszer, Google Earth Engine, Gépi 

Tanulás 
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1. Introduction 

1.1. Introduction to the Thesis  

Modern technologies enable constant monitoring of the state of our Earth. One of the most 

important and rapidly developing technologies is satellite-based remote sensing. The forest 

cover of the Earth is around 31.1%, of Europe is 45.9% and of Hungary is 22% due to the large 

size and huge importance of forests and their monitoring, the remote sensing technologies 

became real complements of field measurements by providing data with high frequency, 

accuracy and often free for vast areas.  

There are constantly new possibilities for forestry professionals due to the quick progress 

of remote sensing technologies offering fine-resolution images of the World daily. Large-scale 

forest monitoring relies on these technologies since forest stands can be found often sparsely 

and their dynamics can be studied only in the longer run. Satellite images can be used to detect 

the change in forest expansion and health state and the remote sensing-based forest health 

monitoring systems are suitable for complementing the field-based monitoring systems 

coordinated by governmental and research institutes, forestry directorates, and universities 

in several countries, Hungary included.  

One of the main reasons for writing this Thesis is to enhance the previously made 

Hungarian Remote Sensing based Forest Health Monitoring System (“TEMRE” shortly in 

Hungarian) which was developed in 2017 by Somogyi et al. (2018) to monitor forest health 

about environmental changes and climate change (described in detail in chapter 2.6.1.4.) but 

in time modifications were needed due to the ending lifespan of Terra satellite, carrying the 

MODIS sensor, which provided data for TEMRE. The final aim is to create a wall-to-wall, 

constantly updated forest monitoring system for Hungary based on satellite imagery and cloud 

computing.  

In my PhD thesis, I first reviewed the scientific methods (models and indices for vegetation 

monitoring) applied in Hungary and around the World. Secondly, I surveyed the possible 

methods to be used, replaced the previous ones, and applied them in case studies, then thirdly 

create a wall-to-wall forest health state map of Hungary. Fourthly a detailed time-series 

analysis was made for the three sample areas to show changes in health state. The fifth final 
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stage was a comparison to existing maps aiming to improve data quality and accuracy for 

future monitoring. 

1.2. Research goals 

In my PhD thesis, I focus on novel forest monitoring methods by replacing the old datasets 

with new ones and proposing health monitoring methods for different forest disturbances. 

Replacing the formerly used MODIS data, ESA Sentinel-2 (S-2) seemed to be the most 

promising solution, and testing this theory several studies were made by us for selected areas 

of Hungary and the whole county observing abiotic and biotic forest damage. 

Abiotic forest damage was surveyed by different methods based on Sentinel-2 in 

Mountain Bükk to get a clear picture of the extent of the ice brake and windfall (Molnár et al., 

2019a). Different vegetation indices derived from MODIS and S-2 images were compared to 

damage data collected in the field measurements (Molnár et al., 2019b) like Normalized 

Difference Vegetation Index (NDVI), NDVI change (NDVIch), Z NDVI (standardized NDVI), 

Normalized Difference Water Index (NDWI), Enhanced Vegetation Index (EVI)). Another type 

of abiotic damage, drought stress, was analysed by the author in Szigetköz, Püspökladány, 

Újfehértó, and Debrecen between 2018 and 2020 based on several vegetation and wetness 

indices. 

Biotic forest damage was detected in Sopron as European spruce bark beetle (Ips 

typographus L) outbreak took place in 2017-2021 (Molnár & Király, 2021). Hopefully, the 

method used in the study will be suitable to survey the newcomer invasive oak lace bug 

(Corythucha arcuata) as well (Paulin et al., 2020). 

Forest health monitoring proposals were made for Nagyerdő of Debrecen utilizing the 

Google Earth Engine cloud platform (Molnár et al., 2021, Molnár & Király, 2022b) and Farkas-

erdő of Sárvár (Molnár & Király, 2022a) using all previously mentioned methods. These areas 

were later expanded to Central Bükk, the third study area of the Thesis, and eventually to the 

whole of Hungary. 
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1.3. Research plan 

My PhD thesis had seven main objectives, such as: 

1. Review existing scientific methods for forest monitoring applied in Hungary, Europe, and 

the World such as remote sensing techniques (especially optical satellite imagery) and 

related vegetation and water indices describing forest state. 

2. Analyse the possible methods for forest disturbance monitoring and examine their 

efficiency via case studies focusing on exact methods and forest damage types. 

3. Describe the three study areas of the thesis: Nagyerdő of Debrecen, Farkas-erdő of Sárvár 

and Central Bükk. Forest health is to be studied with vegetation and water index values in 

oak, hornbeam, and beech-dominated forests from Hungary's eastern, western, and 

northern parts.  

4. Create a novel forest monitoring system for Hungary based on ESA Sentinel-2 optical 

imagery, vegetation indices, and GEE cloud computing and test it on three study areas. 

The monitoring method includes cloud filtering, forest masking, index creation, forest 

health change detection, visualization, and data export.  

5. Analyse the time series of the study areas in detail to identify changes in forest extent and 

health state between 2017 and 2020. The Z NDVI maps for each year are to be compared 

to field damage reports. 

6. Compare the new maps produced in GEE to the existing ones to check data quality and 

accuracy for future monitoring. 

7. Investigate the expansion of the application of the above mentioned methods to a wall-

to-wall system. 

1.4. Hypotheses 

Connected to the main objectives, I stated seven hypotheses: 

1. Satellite images can be used to monitor the health state and forest expansion. The remote 

sensing-based forest monitoring systems are suitable detecting changes and supporting 
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field-based monitoring. Such systems exist in Europe (Czechia, Norway, Germany) and 

worldwide, too (USA, Canada, Australia). 

2. Forest health can be monitored in Hungary based on a 10x10 m spatial resolution Sentinel-

2 L2A (Level-2, surface reflectance) satellite image series in the 2017 – 2020 period using 

specific indices.  

3. Cloudless annual and monthly satellite image composites can be created for the entire 

vegetation season (from April until November) with spatial, temporal and cloud filtering 

methods. 

4. Interannual forest health disturbances due to biotic and abiotic damage can be detected 

by vegetation and water indices (NDVI, NDVIch, Z NDVI, NDWI, EVI) derived from annual 

and monthly composites of Sentinel-2 L2A satellite images. Annual images are used for 

comparing years and monthly ones for monitoring interannual changes. 

5. By developing a specific computer code system, a novel forest monitoring system can be 

created for Hungary in the GEE cloud computing interface utilizing the above-mentioned 

Sentinel-2 dataset, cloud filtering, and vegetation and water indices.  

6. The Copernicus forest maps can support the system by providing novel, satellite-based 

forest masks for both the study areas and the whole Hungary. These up-to-date masks 

could improve monitoring accuracy with the designation of forested areas. 

7. The ground-based dataset of the National Forest Damage Registration System can be used 

as validation of remotely sensed data by comparing damaged forest compartments having 

both field reports and satellite images. 

 

2. Literature review 

In this chapter I described remote sensing basics, remote sensing satellites, indices, image 

processing, forest damage types, forest monitoring systems, cloud computing and machine 

learning. 

2.1. Remote sensing 
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By remote sensing (RS) the physical characteristics of Earth and other astronomical objects 

can be detected and monitored from a distance based on emitted and reflected (mainly solar) 

radiation. The range of radiation is described in the electromagnetic spectrum, which we can 

divide into classes based on the frequency, wavelength, and energy of waves (Figure 1). 

Frequency (f) is the ratio of speed (m/s) and wavelength (m) and is expressed in Hertz (Hz). 

𝑓 =
𝑣

λ
   (1) 

Wavelength is expressed by the ratio of speed (m/s) and frequency (f) and measured in 

meters (m). 

λ =
𝑣

𝑓
   (2) 

The range of frequency is from 1 to 1024 Hz, while in the opposite direction, the wavelength 

varies between 10-16 and 108 meters. The visible part, commonly called light for the human 

eye, is the portion in this spectrum between 380 – 740 nm (3.8 – 7.4 x 10-7 m).  

 

Figure 1. The range of the electromagnetic spectrum with the highlight of visible light 

 

We can divide the electromagnetic spectrum into regions, bands, or channels according to 

frequency (Hz) and wavelength (nm=10−9 m) (Table 1). For remote sensing, visible light, 

infrared and radio waves are the most often used.  

file:///C:/ERTI/PhD/dolgozat/Mehta,%20Akul.%20%22Introduction%20to%20the%20Electromagnetic%20Spectrum%20and%20Spectroscopy%22.%20Pharmaxchange.info.%20Retrieved%202011-11-08
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Table 1. Bands of the electromagnetic spectrum. 

 Band Wavelengths (nm) Frequency (Hz) 

1 γ rays <1 >3×1017 

2 X rays 1 – 10 3×1016 – 3×1017 

3 Ultraviolet  10 – 400 7,4×1014 – 3×1016 

4 Visible light 400 – 700 3,8×1014 – 7,4×1014 

5 Infrared 700 – 105 3×1012 – 4,3×1014 

6 Microwave 105 – 108 3×109 – 3×1012 

7 Radio waves >108 <3×109 

 

Source: Siyavula 

We can utilize different technologies for gathering information about our planet and space 

environment. There are active and passive remote sensing systems based on the sensor types 

that instruments are equipped with. Passive ones detect reflected and thermal radiation, 

while actives first emit radiation, then measuring the time of reflection from the object.  

Active systems emit electomagnetic radiation and their sensors detect these signals 

coming back from the surface. The most important types of active sensors are RADAR (Radio 

Detection And Ranging), LiDAR (Light Detection And Ranging), Sonar (Sound Navigation 

Ranging), GPS (Global Positioning System), and GNSS (Global Navigation Satellite Systems). 

They can be used above and below ground level, in the water, in the air, or the space. The 

great advantage of using active emitters like Radar is that waves can go through clouds and 

water and can give a picture of the surface under any weather conditions.  

While passive sensors measure reflected and thermal radiation to the instrument from the 

surface in fixed frequency bands. These bands are based on physical properties and designed 

for measuring specific features of the objects, like certain wavelengths positioned in natural 

colours (RGB: red green blue), or NIR (Near-Infrared, λ=700 nm-1000 nm) which are suitable 

for land monitoring, vegetation cover, aerosol, cloud detection, ocean  and soil 

temperature measurements, etc. A broadband image contains a couple of broader bands (e.g., 

4 channels with R, G, B, and NIR) like sensors on-board NASA’s Landsat satellites, a 

multispectral image with more bands (like 36 bands of MODIS), while a hyperspectral has 

several hundreds of narrow channels, and an ultraspectral has several thousand (Figure 2). 

file:///C:/Users/Musta%20Ilves/Downloads/Mehta,%20Akul.%20%22Introduction%20to%20the%20Electromagnetic%20Spectrum%20and%20Spectroscopy%22.%20Pharmaxchange.info.%20Retrieved%202011-11-08
https://intl.siyavula.com/read/science/grade-10/electromagnetic-radiation/11-electromagnetic-radiation-03
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Figure 2. Difference between broadband, multispectral, hyperspectral, and ultraspectral 

Imaging (Makki, 2017) 

2.2. Satellite-based remote sensing 

Earth has been studied from space by satellites already for half a century. The first of them 

was the Soviet Sputnik 1, launched in 1957, which was followed by Explorer 1 of the USA in 

1958, and Ariel 1 of the United Kingdom in 1962. In 2019 87 different countries and 

organizations launched altogether 1957 satellites (UCS, 2019). 

Satellites can be classified into several groups according to their use, function, orbit, size, 

and mass, etc.. The usage of satellites is can be commercial,  governmental, military, mixed, 

and civilly as well. 

The main parameter of satellites is a function, that can be remote sensing or Earth 

observation, astronomy, geodesy, meteorology, telecommunication, navigation, military, and 

biology as well. Some types carry human like space shuttles and space stations. 

Satellites are also classified by orbit types. Orbit is their circular track around the Earth, 

which satellites reach after being launched by rockets. There are geocentric, and heliocentric 
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classes according to the object in the centre of the circle. We find satellites in geocentric orbits 

in the highest number, which observe the Earth. Moon is also on this orbit type, while planets 

and comets orbit the Sun in a heliocentric track.  

We can divide the geocentric orbits according to their altitude into classes: there are low, 

medium, geosynchronous and high Earth orbits (ESA, 2017). Other classification categories are 

based on inclination, eccentricity, synchronous and pseudo-orbit characteristics (Riebeek, 

2009). Low Earth orbit (LEO) has an orbital altitude of 180 - 2000 km,  Medium Earth orbit 

(MEO) has a 2000  –  35786 km, and Geostationary orbit (GEO) is 35786 km high, with the 

same rotation period as the Earth during a day with the speed of 11070 km/h at the Equator. 

Finally, the High Earth Orbit (HEO) is above 35786 km.  

According to the inclination of orbits, there are Polar and quasipolar sun synchronous 

Orbits. The inclination is the orbit’s angle to the Equatorial plane, and in the polar case, it is 

around 90 degrees, crossing both poles. In the case of quasipolar sun-synchronous orbit it 

passes above the Equator and near the poles always at the same time (Riebeek, 2009).  

Eccentricity classification is based on the shape of the orbit. The circular orbit has zero 

eccentricity, while the Elliptic orbit has between 0 and 1, where zero is the circle and 1 is the 

ellipse (Swinburne Astronomy Online, 2019). Geosynchronous, geostationary, Molniya, and 

Tundra Orbits are all elliptic orbits (Xiong & Butler, 2018). Geosynchronous and Geostationary 

orbits are similar in the respect of the perigee (furthest point of orbit from Earth) of LEO but 

different in the apogee (closest point of orbit from Earth) with geosynchronous or 

geostationary altitude. Orbit’s inclination is 63.4° and orbital period of half of the day, 

spending the majority of the time over two areas, Russia and the United States and Tundra 

orbit has a similar inclination of 63.4° but an orbital period of one day. These satellites are 

created for observing a single area.  

The synchronous classification contains several classes connected to the rotational period 

of the Earth, the Sun, or Mars (GISGeography, 2018). The synchronous orbit (SO) has the same 

orbital period as the Earth’s rotational period (1 day), while the Semi-synchronous orbit (SSO) 

has a lower orbit resulting shorter rotational period (half a day). Geosynchronous orbit (GSO) 

is at 35786 km high, and when the inclination of zero the satellite it looks like staying above 

the same point always, in this case, we talk about geostationary orbit (GEO). Space programs 

https://en.wikipedia.org/wiki/Low_Earth_orbit
https://en.wikipedia.org/wiki/Medium_Earth_orbit
https://en.wikipedia.org/wiki/Geosynchronous_orbit
https://en.wikipedia.org/wiki/High_Earth_orbit
https://en.wikipedia.org/wiki/Sun_synchronous_orbit
https://en.wikipedia.org/wiki/Sun_synchronous_orbit
https://en.wikipedia.org/wiki/Sun_synchronous_orbit
https://en.wikipedia.org/wiki/Equator
https://en.wikipedia.org/wiki/Circular_orbit
https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Elliptic_orbit
https://en.wikipedia.org/wiki/Molniya_orbit
https://en.wikipedia.org/wiki/Orbital_period
https://en.wikipedia.org/wiki/Tundra_orbit
https://en.wikipedia.org/wiki/Tundra_orbit
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2.2.1. NASA missions 

The 69 missions of National Aeronautics and Space Administration (NASA) are categorized into 

13 topics: atmosphere, climate, continental drift and geodynamics, gravity, hurricanes, ice, 

land and vegetation, oceans, ozone, Sun and its Influence on Earth, water cycle, weather, and 

wildfires (NASA, 2017). For forest monitoring purposes land and vegetation satellite missions 

are the most interesting, they are the following: Aqua, ICESat, ICESat-2, Landsat, LDCM, NPP, 

Operation Ice Bridge, Orbiting Carbon Observatory-2, Radiation Belt Storm Probes, Shuttle 

Radar Topography Mission, Soil Moisture Active Passive, TDRS, and Terra. 

2.2.2. ESA missions 

European Space Agency (ESA) has recently had 18 missions and three cooperative missions 

with NASA (ESA, 2020a). Earth observation missions are amoung others the Aeolus, the 

CryoSat, the Sentinel-1, 2, 3, 5P, and the Swarm. Sentinels are part of the Copernicus Earth 

observation program. 

In 2024 Biomass (ESA, 2019) and in 2025 Flex missions (ESA, 2020b) will be launched for 

estimating forest biomass and vegetation fluorescence and photosynthetic activity. 

2.2.3. Remote sensing satellites 

Regarding the equipment carried by remote sensing satellites, we can talk about passive (e.g. 

optical), and active (e.g. SAR, LiDAR) systems, based on sensing reflected radiation of the 

electromagnetic spectrum or emitting and after sensing the time of returning waves. The 

image created in a certain spectrum by sensors is described by spatial (pixel size), spectral 

(bandwidth in the electromagnetic spectrum), and temporal (revisiting time) resolution.  

Respecting forest monitoring the most important satellites will be described below, which 

are widely used due to beeing free and having optimal parameters for this aim. The satellite 

Terra & Aqua were used in the Hungarian Forest Monitoring System (Somogyi et al., 2018) and 

several studies concerning forest monitoring all accross the World, providing 20-year long 

time series. While the satellites of the Landsat program have been on orbit for even longer 

time, since 1972. Eventually the Sentinel-2 provides higher spatial resulution which gives new 

perspective of forest research.  
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2.2.4. The satellites of the Landsat program 

The history of remote sensing satellites starts in 1972 with the launch of the first Landsat 

satellite operated by the NASA of the USA. For almost fifty years the longest continuous 

dataset of Earth observation was collected by Landsat satellites and nowadays Landsat-7 and 

-8 are operational and 9 was launched in 2021 (USGS, 2019).  

Regarding the technical parameters, the temporal resolution is 18 days for Landsat 1-

3 (in the followings indicated with L) and 16 for L4-8, while the spatial resolution is 15-100 m 

in 4-11 bands (4 for L1-3, 7 for L4-5, 8 for L7, and 11 for L8). These features together create a 

suitable base for forest monitoring as Banskota et al. (2014), Saarinen et al. (2018), Barka and 

Bucha (2010), Wulder et al. (2022) presented. 

According to Banskota et al. (2014), current state and temporal dynamics are the most 

significant attributes of forest monitoring. The structure and composition of forests describe 

their state and the temporal dynamic shows the change in it. Changes occur due to short-term 

(biotic or abiotic), and long-term events (climate change, anthropogenetic activities). The 

combination of these two types of forest state changes results in differences in biophysical 

conditions and vegetation phenology as well.  

To monitor these changes by satellite data the correction of raw images is needed for 

improving quality. For this aim atmospheric, topographic, and geometric corrections are used 

to minimising the effect of temporal variation in atmospheric properties, brightness variations 

of terrain (or terrain shading), and inaccuracy by registration and correction of geometry.  

The availability of corrected images enables the calculation of different kinds of indices 

that are used to describe numerically the forest state and changes. Such indices are NDVI 

NDWI, EVI, etc. 

Based on them, Banskota et al. (2014) categorized forest ecosystems into three groups: 

abrupt changes (clearcut, crown fire, defoliation), partial changes (fire, insects, diseases), and 

subtle changes occurring gradually through time (e.g., forest degradation, tree mortality, and 

forest successional dynamics).  

Different approaches can be used for the classification, such as Image Classification-

based Analysis and Trajectory-Based Change Detection. In the first case, post-classification is 
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applied at end of investigated time interval by comparison of independently produced images, 

then the comparison is made to detect changes. In the second case ,the temporal patterns of 

spectral variables are used by the following methods: threshold-based change detection, 

single curve fitting, hypothesized curve fitting, or trajectory segmentation. 

An application of these methods is fundamental in a forest monitoring system. A 

country-based monitoring system is needed to have a dataset covering the whole country for 

a sufficiently long period. Landsat imagery is suitable for that goal since the launch of Landat 

4 in 1982, 30x30 m resolution data is available and Landsat-9 was launched in 2021 to provide 

data for additional 10 – 20 years. 

2.2.5. Terra & Aqua 

The data provided by the MODIS sensor onboard satellite Terra and Aqua cover the whole 

world every 1-2 days in 36 narrow spectral bands at 250 – 1000 m spatial resolution (NASA, 

2019a). Terra is equipped with five instruments: ASTER, CERES, MISR, MODIS, and MOPITT, 

while the sister ship Aqua has: AIRS, AMSU, CERES, MODIS, and AMSR-E (NASA, 2019b). 

For forest monitoring MODIS is one of the most widely used devices, several studies were 

made based on the data of this sensor, examining abiotic and biotic forest damage, heat 

stress, climate change, phenological phases, and land cover changes. MODIS images are 

applied all over the World. In the forest monitoring chapter (2.6.) I give examples which might 

be similar to our methods due to similar climatical and ecological conditions. 

2.2.6. Sentinels  

European Space Agency launched the first Sentinel mission in 2014 in the framework of the 

European Union's Copernicus Earth observation program which has been developed since 

1998 and originally was called Global Monitoring for Environment and Security (GMES), while 

in 2012 the European Commission changed the name to Copernicus. The program offers freely 

available satellite images of the Earth in medium and high spatial and temporal resolution. In 

2022 Sentinel-1, -2, -3, and -5P provided data for research. Sentinel-2 and -3 are described 

here as the most promising ones for forest monitoring.  

Sentinel-2 satellites (Figure 3) were launched in 2015 and 2017 (A and B satellites), and 

they have the highest potential for monitoring purposes with a 1 – 5 days revisit time and free 

https://en.wikipedia.org/wiki/European_Union
https://en.wikipedia.org/wiki/European_Union
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and open data policy, and high 10x10 – 60x60 m resolution (Table 2). On- board the Sentinel-

2 satellites took place the Multispectral Instrument (MSI) (ESA, 2020c) which measure the 

radiance of Earth in 13 spectral bands. Different S-2 products are provided by ESA such as 

Level-0 (raw image), Level-1 (L1C, Top Of Atmosphere reflectances) and Level-2 (L2A, Bottom 

Of Atmosphere), this latter is derived from Level-1C products. 

 

 

Figure 3. The Sentinel-2 satellite is observing the Earth. Source: ESA. 

 

Table 2. Spectral bands for the Sentinel-2 MSI sensor 

Sentinel-2 Bands Central Wavelength 

(µm) 

Bandwith 

(nm) 

Spatial 

resolution 

(m) 

Band 1 - Coastal aerosol 0.443 20 60 

Band 2 - Blue 0.490 65 10 

Band 3 - Green 0.560 35 10 

Band 4 - Red 0.665 30 10 

Band 5 - Vegetation Red Edge 0.705 15 20 

Band 6 - Vegetation Red Edge 0.740 15 20 

Band 7 - Vegetation Red Edge 0.783 20 20 
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Band 8 - NIR 0.842 115 10 

Band 8A - Vegetation Red 

Edge 

0.865 20 20 

Band 9 - Water vapour 0.945 20 60 

Band 10 - SWIR - Cirrus 1375 30 60 

Band 11 - SWIR 1610 90 20 

Band 12 - SWIR 2190 180 20 

2.3. Satellite-derived vegetation indices 

Satellite-derived Vegetation Indices (VIs) have been widely used for monitoring the extent and 

state of vegetation-covered surfaces. Spectral remote sensing provides this type of data based 

on the ratio of absorbed and reflected solar radiation in different bands (Stacher, 2019). The 

high absorption of healthy vegetation in the red wavelength (due to the secondary absorption 

of green colour of chlorophyll-A, chlorophyll-B, and carotenoids) and high reflectance of 

vegetation due to internal leaf structure in the Near-Infrared (NIR) band. The higher 

photosynthetic activity means higher absorption and a denser, healthier state. While 

unhealthy or less dense vegetation reflects more visible and less NIR lights than healthy 

vegetation (NASA, 2000). In the following subchapters, I describe the VIs used in the Thesis. 

Besides the most commonly used NDVI (Huete, 2012) and its variations, I tested more complex 

VIs like the EVI, which is optimized to minimize VI biases from soil background and aerosol 

variations. Since the sensing of vegetation liquid water (Gao, 1996) has great importance 

nowadays due to climate change, the NDWI was used to investigate this issue.  

2.3.1. NDVI 

 

Normalized Difference Vegetation Index (NDVI) (3) is calculated from atmospherically 

corrected  reflectances detected in the (NIR) and visible red (RED) bands:  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  (3) 
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where values vary between -1 and +1 indicate the photosynthetic activity of the forests. A 

healthy forest usually has a value between 0.8 – 0.9, while 0 stands for vegetation-less land 

area, and negative numbers mark cloudy or water surface (Rouse et al., 1974). 

During the process of leaf loss or discolouration (Caccamo et al., 2011, Spruce et al., 2011, 

Hlasny et al., 2014) these values drop significantly. After serious forest damage, this state lasts 

for a longer period (weeks, months, years) to 0.3 – 0.7 but there are changes even in the 

healthy forest called inter-annual variation. During the vegetation period, NDVI rises from 

about 0.4 to 0.9, reaching the maximum in the middle of summer. Photosynthetic activity 

decreases during the autumn and in the winter it reaches the minimum (Figure 4) (Kern et al., 

2022). 

 

Figure 4. A typical phenological curve of a broadleaf forest (sessile oak with hornbeam) based 

on multiannual mean NDVI values. Source: Kern et al. (2022) 

2.3.2. NDVI change 

The NDVI change index (4) is calculated from two NDVI images by subtraction of a given year’s 

value (second year) from the previous year’s value (first year). 

𝑁𝐷𝑉𝐼𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑁𝐷𝑉𝐼𝑠𝑒𝑐𝑜𝑛𝑑 𝑦𝑒𝑎𝑟 −  𝑁𝐷𝑉𝐼𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟   (4) 
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NDWI and EVI changes were calculated similarly to this, the range is from -2 to +2. 

However, these change indices only show the difference in forest state between two exact 

dates and might not be enough to detect forest damage due to interannual variation of index 

values, especially for the beginning and end of vegetation period. 

2.3.3. Z NDVI 

However, NDVI shows the state of the forest on an exact date, which is not enough to point 

out damage due to variation of NDVI. To reduce the inter-annual variation of NDVI value 

standardized version (Z NDVI) (5) is used instead of the simple version (Peters et al., 2002) 

calculated on pixel level by this formula: 

 

𝑁𝐷𝑉𝐼 𝑍 =
𝑁𝐷𝑉𝐼−NDVImean

NDVIstd
  (5) 

 

where Z NDVI is the standardized NDVI, NDVI is the actual year (2017, 2018, 2019 or 2020), 

𝑁𝐷𝑉𝐼mean is the multiple-year average of NDVI (period between 2017 – 2020), and 𝑁𝐷𝑉𝐼std is 

the standard deviation of NDVI values through (also the period between 2017‒2020). 

According to my experiences the Z NDVI could vary appreciably between the end values, in 

Hungary most often between -3 and 3.  

2.3.4. EVI 

The Enhanced Vegetation Index (EVI) (6) is considered an enhanced vegetation index with 

several correlation factors aiming to achieve results where NDVI is insufficient (Justice et al., 

1998) due to saturation of soil (Huete et al., 2006). It has the following formula:  

  𝐸𝑉𝐼 = G ∗
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝐶1∗𝑅𝐸𝐷−𝐶2∗𝐵𝐿𝑈𝐸+𝐿)
  (6) 

where NIR, Red, and Blue have atmospherically corrected surface reflectances , L is the 

soil background adjustment for differential NIR and red radiant through a canopy, and C1, and 

C2 are the aerosol resistance coefficients, which utilize a blue band to correct aerosol 

influences in the red band. The coefficients adopted for MODIS and Sentinel EVI are; L=1, C1 

= 6, C2 = 7.5, and G (gain factor) = 2.5. The value of healthy vegetation ranges between 0.2 – 

0.8 depending on the vegetation type. EVI was made for MODIS originally, but it can be used 

https://en.wikipedia.org/wiki/Aerosol
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for Sentinel-2 and -3 images as well where damaged forest (EVI = 0.4 – 0.6) stands to diverge 

from healthy ones (Molnár et al., 2020). 

2.3.5. NDWI 

Normalized Difference Water Index (7) (also called Wetness or Moisture Index) is sensitive to 

changes in vegetation canopy water content with similar formula (Gao, 1996) but at different 

wavelengths, 820 for NIR and 1600 for SWIR (Index database, 2020b). 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
  (7) 

NIR (near-infrared) is band 8 and SWIR (short-wave infrared) is band 11 in the case of 

Sentinel-2. High NDWI values correspond to high vegetation water content and cover while 

low index values to low vegetation water content and cover. During the period of water stress 

or after logging NDWI decreases. The range of NDWI is similar to NDVI, where -1 refers to the 

driest and +1 to the wettest state. Important to mention that NDWI is suitable for coniferous-

broadleaf separation and the SWIR band has 20x20 m resolution unlike the other bands used 

in the above-mentioned indices. 

2.4. Image processing 

Processing satellite image requires several interdependent steps. The workflow starts with the 

image acquisition (downloading or accessing), followed by pre-processing including 

atmospheric, geometric, and radiometric correction, main processing, including filtering, 

masking, calculation of VIs, classification, information extraction, etc., and eventually post-

processing, analysis, visualization and data export (Jensen, 2016). The detailed algorithm I 

used in GEE is similar to this workflow and described in detail in the methods (Chapter 3.3.). 

2.5. Cloud computing 

Google Earth Engine is a cloud-based geospatial, interactive, and big-data processing platform 

used for multipurpose scientific data analyses and visualization including forest monitoring, 

land cover, and land-use changes (Gorelick et al., 2017; Google, 2019). The GEE is available 

since 2010 for free and the multi-petabyte catalogue covers 40 years of series of satellite 

imagery, having over eight petabytes size (eight million gigabytes). Datasets can be found in 

the Earth Engine Data Catalog in either raster (satellite imagery, climate, weather, terrain) or 
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vector format (country boundaries, land cover types, water bodies, etc.). Besides datasets, 

JavaScript and Python Guides and tutorials are also available with sample codes included. 

még általános hivatkozás 

The GEE has four main components:  

• datasets of remote sensing imagery,  

• computational power for processing geospatial data, 

• Application Programming Interface (API) in JavaScript and Python languages for 

creating requests to the Earth Engine servers, 

• and code editor or dashboard: an online Integrated Development Environment (IDE) 

for visualization of spatial analyses. 

The application of GEE-based method is described in detail in chapter 3.3. 

2.6. Machine Learning 

Machine Learning (ML) is an application of Artificial Intelligence (AI) (Figure 5) that is based on 

the useage of data and algorithms to imitate the way of human learning and  improving the 

accuracy gradually. ML can be used in GEE (Bar et al., 2020) to expand the possibilities to find 

forest disturbances as well as to classify tree species, which can support the proper 

interpretation of forest change maps.  
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Figure 5. Relationship between AI, ML, Deep Learning, and Convolutional Neural Network 

(CNN). Source: Zhang et al. (2022) 

 

ML is based on training data that is given by the user and the model predictor uses that to 

make decisions and predictions. There is a supervised and unsupervised form of ML, in the 

first case, the dataset includes inputs and outputs as well, while in the second only outputs.  

 Several ML algorithms such as Random Forest , Minimum Distance Estimation, Support-

Vector Machine, k-Nearest Neighbour Regression, and Gradient Boost Regression Tree can be 

utilized to achieve these goals (Zhang et al., 2019). The Random Forest algorithm can be used 

for tree species classification, which has supervised, unsupervised and regression type as well, 

which are based on decision trees to classify data (Ho, 1995). The supervised version builds 

decision trees on the training sample and creates classes. The classifed maps provide valuable 

information about forests species or health differentiating healthy and damaged strands. 

Hence, they can be used for predicting future state as well, which could further enhance 

monitoring efficiency.  

2.7. Forest damage types 

2.7.1. Abiotic forest damage types 

Regarding abiotic damage types, I described here the most frequently occurring ones, which 

are capable of massive destruction of forests on such a scale which is detectable by RS. 

 

• Snow break: breakage of branches and parts of crown mostly due to the pressure of 

wet snow. In the worst case due to the accumulating weight of snow, the whole crown 

or the stem could break or bend, this latter result in damage to the roots as well which 

is irreversible (Csóka et al., 2013).  

• Winter ice and hoarfrost damage: rather rarely happens due to required specific 

weather conditions. When after a strong, dry cold period, warmer and wetter air mass 

flows to the supercooled surfaces the rain freeze to the trees resulting in heavy 

pressure on branches which leads to branch and crown breakage. Besides the thick ice, 

hoarfrost can precipitate out too which results in less serious damage. However, the 
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combination of these can occur at the same time as it took place in Northern Hungary, 

Börzsöny, and Pilis Mountains in 2014.  

• Frost damage: Spring frost causes damage to fresh buds and sprouts making them 

wizen and brown. In worse cases, the bark can break open resulting in tree mortality.  

• Windfall and break: storm-wind could cause different damage. Windfall occurs in areas 

with shallow, wet soil where trees have a horizontal root system, which falls to the 

ground with the roots. On contrary, in drier and heavier soil the stem and crown break 

is more frequent.  

• Drought: permanent high temperatures and dry periods induce drought damage both 

in young and mature stands. Leaves wit and turn yellow and dry. Some species react 

with defoliation to heat stress.  

2.7.2. Biotic forest damage types 

In this section I described three insect species which recently has great importance in forest 

monitoring since there are all able to cause severe health issues and eventually mortality.  

• European bark beetle (Ips typographus, Linnaeus, 1758) is a 4 – 5 mm long bug feeding 

mainly on Picea, but sometimes on Pinus and Larix too. It has 2 – 4 generations per 

year resulting in massive, several millions of m3 spruce mortality all over Europe.  

• Gypsy moth (Lymantria dispar, L.) is one of the most serious pests in forests being 

polyphagous and feeding on several hundreds of species. During gradation, the leaf-

eating moth can cause total defoliation in vast areas for years. Outbreaks take place in 

Hungary periodically, every 4 – 12 years. The last major one occurred in 2003 – 2006.  

• Oak lace bug (Corythucha arcuata, Say 1832) has 2 – 4 generations per year and causes 

damage mainly on oak species but can occur on Acer and Castanea as well. Known 

impacts of the bug are early leaf abscission and the general weakening of infested 

trees. Since 2019 in Hungary, we can talk about gradation since it occurred everywhere 

in the country in high numbers.  

2.8. Forest monitoring systems 

This section was made to overview the characteristics of different forest monitoring 

techinques (Lausch et al., 2016) and systems (listed in 2021) based on the: 



10.13147/SOE.2023.016

 

28 
 

• development stage of satellite-based forest monitoring: methods, development 

directions (machine learning), technical possibilities, obstacles, and solutions 

• technical parameters and applicability of MODIS, Landsat 8, Sentinel-2, and -3  

images for forest monitoring purposes 

• different vegetation indices (NDVI NDWI, EVI, etc.) are used for short and long-term 

measurements. 

 

The European forest monitoring systems (Table 3) are listed in chapters 2.8.1 and 2.8.2. 

which utilize satellite imagarey and ground-based datasets. 

 

Table 3. European satellite-based forest monitoring systems. 

Material Hungarian Polish Czech Slovak German Slovenian Norwegian Finnish 

MODIS ☒ ☐ ☒ ☐ ☒ ☒ ☐ ☐ 

Landsat 8 ☐ ☐ ☒ ☒ ☐ ☒ ☐ ☒ 

Sentinel-2 ☒ ☒ ☒ ☒ ☐ ☒ ☒ ☐ 

Sentinel-3 ☒ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Planet ☐ ☐ ☒ ☐ ☐ ☐ ☐ ☐ 

 

2.8.1. Hungarian forest monitoring systems 

In this chapter I wrote about monitoring systems used in Hungary, both the ground-based and 

the RS-based ones. 

2.8.1.1. Forest Protection Measuring and Observation System 
 

In Hungary, the Forest Protection Measuring and Observation System (in Hungarian 

Erdővédelmi Mérő- és Megfigyelő Rendszer, shortly EMMRE) runs since 1987 and coordinated 

by the Forestry Research Institute of University of Sopron and Forestry Department of 

Hungarian National Land Centre (in Hungarian NFK EI) (NFK, 2018). The ground-based Forest 
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Damage Registration System (in Hungarian Országos Erdőkár Nyilvántartási Rendszer, shortly 

OENyR or NFDRS in English) is an integrated part of EMMRE since 2012. Aggregated forest 

damage can be also viewed on dedicated maps of NFDRS from 2013 and updated every year. 

The forest protection damage reports of NFDRS contain data on damage date, type, 

frequency, intensity, code, tree species and damaged area given for each forest compartment 

of Hungary, which is systematically collected and reported at least four times per year at the 

end of each quarter, except for quarantine pests that have to be reported at once (Hirka 2018). 

The damage data registered in forest protection damage reports are available on the NFDRS 

website (Hirka, 2019) and in annual reports (Figure 6). In every year around 25 000-150 000 

ha damage takes place according to Koltay (2006). The forest protection damage reports of 

NFDRS has data on damage frequency and intensity given for each forest compartment of 

Hungary.  

The damage frequency (11) is the number of damaged given trees compared to all trees 

in the same species in the compartment expressed in the percentage (0-100%), i.e. if 30 oak 

is damaged in the compartment of 100 trees then the frequency is 30 %.  

𝐷𝑎𝑚𝑎𝑔𝑒 𝑓𝑟𝑒𝑞𝑒𝑛𝑐𝑦 =  
𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑡𝑟𝑒𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑒𝑒𝑠
∗ 100  (11) 

While the damage intensity shows the severity of damage and health deterioration 

compared to the healthy state, given in percentage (0-100%). Intensity shows if i.e. half of the 

canopy is missing due to defoliation in the compartment then the intensity is 50%.  

Damage area and total forest compartment area are given in hectares. As a novel 

parameter, damage ratio (12) was introduced according to the following formula to enchance 

spatial agreement between the datasets, measured on a 0-100% scale: 

𝐷𝑎𝑚𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑎𝑟𝑒𝑎

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
∗ 100   (12) 

Trends were calculated from the annual reports and according to Hirka et al. (2019, 2023), 

the frequency of droughts showed an increasing trend in Hungary in the last 50 years. The 

yearly values of the forest drought damage showed a significant response for the yearly values 

of two drought indices, namely Pálfai and Forest Aridity index (R2=0.8 and 0.56). Droughts also 

have major indirect effects on forest health by causing damage chains, which could result in 

forest insects outbreaks as well.  
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Figure 6. Biotic and abiotic forest damage between 1962 – 2022 (Hirka, 2023). 

2.8.1.2. Spectral forest monitoring system 

Király (2007) developed methods for modern, satellite-based forest monitoring at the 

University of Sopron and successfully tested them in the area of the Sopron Mountains. The 

spectral databank classification method based on forest compartments and the vegetation 

indices using SPOT P (Satellite Pour l’Observation de la Terre), and ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer), and Landsat satellite images 

showed remarkable results, thus the usage of them would be useful in Hungarian forest 

monitoring. 

2.8.1.3. Climate change monitoring 

Climate change created a growing interest among scientists and aimed to investigate the 

effects on forests. Kovács & Gulácsi (2018) studied the usage of MODIS tiles in a study area of 

Mid-Danube-Tisza Plain in Hungary, in connection of this enviornmental issue. The area 

suffered a 1.2 – 1.5 °C temperature increase (Lakatos et al., 2014), and then vegetation period 

phases (start and end) shifted (1.9 – 4.4 days) (Varga et al., 2012). The forest cover map was 
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taken from the Corine Land Cover database, and MODIS images were collected from summer 

periods (81 – 273 DOY) between 2000 and 2017. Different vegetation indexes, such as NDVI, 

EVI, and standardized EVI were calculated for the study area. Coniferous, deciduous, and 

mixed forests were examined separately, and results were compared to each other and 

represented on a time-series graph. According to the results EVI was proven to be more 

sensitive to external impacts, but standardization is needed to examine differences between 

years. By this method, drought periods were shown in 2003, 2009, and 2012, and a wet year 

also in 2010. Validation happened using the PADI dataset of the CARPATCLIM database, and 

high correlation (R2=0.72–0.86) values were observed with NDVI and EVI. However, 4/5 of 

forests are affected by drought, trends were not identified here either, only descending 

amounts of biomass. 

2.8.1.4. TEMRE 

In 2017 Somogyi et al. (2018a) created the Remote sensing based Forest Health Monitoring 

System (in Hungarian: Távérzékelésen alapuló Erdőállapot Monitoring Rendszer, shortly 

TEMRE) to monitor forest health about environmental changes and climate change. The 

system utilizes filtered and forest-masked Terra MODIS NDVI image composites with 250x250 

m spatial and 16 days temporal resolution. The forest state is described by standardized NDVI 

Z, which is based on the actual, long-term (2000 – 2020) average, and the standard deviation 

of forest pixel values (Figure 7). These maps are regularly published at http://www.temre.hu 

supported by tree species map layers and site factors (Somogyi et al. 2018b, Molnár et al. 

2018) (Figure 8). 

http://www.temre.hu/
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Figure 7. Structure of TEMRE 

 

Figure 8. The health state of Hungarian forests in July 2019 in TEMRE 
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According to the experiences, TEMRE detected the European gipsy moth damage in 2003-

2006 in the Northern Medium Mountains and Southern Hungary, drought in Keszthely 

mountains in 2012, sleety rain in Pilis and Börzsöny mountains in 2014, and snow break effects 

in Bükk mountains in 2017. Pixels over the damaged areas showed discolouration through the 

year of the damage in large areas but in the following years, they started to disappear due to 

regeneration and reforestation.  

Experience has shown that the system can monitor most of the forest area of Hungary and 

detect forest health issues across space and over time (Figure 9). For example, TEMRE could 

detect the effects of the large-scale windfall and snow break in Bükk in 2017 (Figure 9a), the 

sleety rain (glaze) that loaded trees with heavy ice in Pilis and Börzsöny mountains in North 

Hungary 1-3 December 2014 (Figure 9b) (Zoltán et al., 2021). Other examples of abiotic 

damage are from 2017 when spring frost, snow, and wind damaged some mountainous areas 

above about 400 m, and from 2012 when forests of Veszprém county of Western Hungary 

suffered larger scale drought (Móricz et al., 2018). Biotic agents can be also observed with 

TEMRE such as European gipsy moth (Figure 9c) (Nádor et al., 2007) and oak lace bug 

outbreaks from 2012-to 2013 and 2019 onwards (Figure 9d) (Kern et al., 2021). 

a b 
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c 

 

d 

 

Figure 9. Abiotic and biotic forest damage observed in TEMRE: windfall and snow break in May 

2017 (a), ice break in July 2015 (b), gipsy moth in June 2004 (c), and oak lace bug in September 

2019 (d).  

TEMRE products were used in a case study when Barka et al. (2019) demonstrated a 

multipurpose application of the normalized difference vegetation index (NDVI) derived from 

MODIS products for forest monitoring across the Central-European macro-region (the 

Western Carpathians and Pannonian basin), where NDVI values could identify the location and 

extent of forest damage caused by snow break and windbreak. The article is based on 

Hungarian and Slovak RS forest monitoring methods, see the latter in detail in chapter 2.8.2. 

Enhancement of TEMRE was made in two steps, in which I participated. The first one was 

the replacement of MODIS products with Sentinel-3 and 2, and took place in 2020, which was 

the theoretical end of life of the Terra satellite, but it still operated in 2022 when constellation 

exit maneuver was made. Having similar attributes (300x300 m spatial and 1-2 days temporal 

resolution in the case of Sentinel-3) made possible the creation of 12 days NDVI composites 

for the vegetation period at a higher frequency. Sentinel-3 was used to cover the entire 

country and Sentinel-2 was used in two study areas (Central Bükk and Fekete-víz Plain) where 

the original resolution was reduced to 20x20 m and published for the period 2018-2021.  

2.8.1.5. Hungarian Earth Observation Information System 

The Hungarian Earth Observation Information System (in Hungarian: Földmegfigyelési 

Információs Rendszer, (FIR)) is a new system, which is available in the beta stage for the public 

in 2022 at this website: https://efold.gov.hu/. It is under development by the consortium of 
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the Hungarian Governmental Agency for IT Development, Lechner Knowledge Centre, 

National Infocommunications Services Company, and the Ministry of Foreign Trade and 

Foreign Affairs. A wide range of ESA satellite products are available on the geoportal such as 

RGB, NDVI, EVI, NDWI, etc., derived from Sentinel-1, 2, and 3, 5P for viewing and downloading.  

2.8.2. Forest monitoring systems in Europe 

International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects 

on Forests (ICP Forests, http://icp-forests.net/) is one of the World’s largest biomonitoring 

networks with the collaboration of 42 countries, which provides information on forest 

condition, air pollution, climate change, and biodiversity (ICP, 2011). The program was 

launched in 1985 by the Convention on Long-range Transboundary Air Pollution of the United 

Nations Economic Commission for Europe (UNECE). 

This ground-based monitoring provides useful data on two levels. Level I is based on 6000 

observation plots on a systematic 16 x 16 km grid of Europe and Level II with 500 intensive 

monitoring plots represents selected forest ecosystems to clarify cause-effect relationships. 

Data from both levels are useful for the validation of satellite-based forest monitoring systems  

ICP Forest plots are included in the Hungarian ground-based forest monitoring systems 

(EMMRE, OENyR) and fields measurements are made regularly, but nowadays the lack of 

human resources and availability of remote sensing data drives us to develop this system with 

satellite data to make the nationwide monitoring rapidly, automatically and with low cost. 

However completely satellite-based systems can be found yet in a few numbers.  

2.8.2.1. Slovak forest monitoring system 

The forest monitoring system of the Slovak National Forest Centre called „Forest cover change 

detection by satellite scenes” is a system (Barka et al., 2018) aiming to visualize actual and 

historical Landsat and Sentinel-2 satellite compositions to monitor forest state and to identify 

changes by using ArcGIS (http://www.nlcsk.sk/stales/m_aplikacia_en.html) (Figure 10). It has 

four applications: visualization of satellite scenes and forest health state, comparison of 

satellite scenes from different periods, dynamic visualization of actual and historical satellite 

scenes, and dynamic visualization of forest health state classifications. The dynamic 
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visualization of forest state classifications based on satellite scenes contains maps from 1990 

to 2019, where health status can be observed over time with damage classification colours 

within forest boundaries. 

 

Figure 10. Slovak forest monitoring system showing dynamic visualization of forest state 

classification based on satellite scenes for the period 1990-2017. 

The nationwide forest health assessment was made in an automatized way, which is fast, 

accurate, and based on free Sentinel-2 images and two-phase regression used for detecting 

forest damage, especially windstorms and biotic agents. In this method, the first phase of 

forest health estimation happens from satellite images (mosaiced Landsat and Sentinel-2 from 

the last 40 years) and in the second phase, ground defoliation is described based on 112 

ground data plots, where defoliation was the main indicator of tree health. Different spectral 

reflectivity in forest stands connected to their foliage and linear regression showed strong 

correlation. Significant forest health changes were found and described by foliage loss and 

health state decrement. The 1st phase (correlation of satellite and defoliation in the previous 

year) was R2= 0.4 – 0.7 and between the 1st and 2nd phases 0.85 – 0.97. Eventually, this method 

showed 15% of damaged forests and the promising results can be further optimized using 

Sentinel-1 images, as the authors suggested. 

Barka and Bucha (2010) also presented a synergy of satellite data from Terra, Landsat, 

SPOT. The focus was on the evaluation of the ecological and productive state of forests based 

on the identification of damaged areas and biophysical and structural properties. A 
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combination of SPOT and ASTER (compared to Landsat showed the best results in damage 

detection, while Terra MODIS was utilized most successfully in biophysical and structural 

properties identifying. The biophysical and structural identification is based on vegetation 

indices (NDVI, EVI, LAI), and photosynthetic active radiation absorbed by vegetation calculated 

from satellite image bands. Both methods of subsystems were successfully applied to different 

tree species such as European beech (Fagus sylvatica), Norway spruce (Picea abies), and 

Turkey oak (Quercus cerris L.). 

Bucha & Koreň (2014) constructed a phenological model, which predicts phenological 

events by NDVI during the whole year. The period between 2000 and 2015 was used in the 

study, and 803 MODIS tiles were collected for model input. NDVI modelling was made on a 

sigmoidal logistic curve, where v(t) stands for the day of the year, and it is calculated using the 

minimum and maximum NDVI (Vmin, Vmax), and spring and autumn amplitude controls (m1-4). 

After the average and standard deviation of NDVI were calculated first then the second 

derivate was created to model these curves, especially the phenophases onset. By this method 

minimum, maximum and extreme points were given and marked on the curve through the 

vegetation season. Finally, time series analysis was made by regression, but significant trends 

were not observed in any phases, only a very slight shift (0.8-1.9 days). Despite the lack of 

trends, the phases were successfully identified proving the efficiency of the model and it is 

used in the forest monitoring system of the Slovak National Forest Centre. 

2.8.2.2. Czech forest monitoring systems 

In Czechia, several forest monitoring approaches can be found in different institutes. The 

Czech Forest Management Institute (in Czech: Ústav pro hospodářskou úpravu lesů Brandýs 

nad Labem, or shortly ‘ÚHÚL’) developed a method using Sentinel-2 data and NDVI, LAI (Leaf 

Area Index) for forest health evaluation. The LAI was calculated on 189 ICP plots, which are 

based on field LAI measurements and supported by remote sensing as well for the years 2015 

and 2017. Only the best-quality pixels were chosen with a decision tree based on the lowest 

cloud cover and highest biomass values. Then vegetation indices were calculated like NDVI, 

Red Edge Inflection Point (REIP), Normalized Difference Infrared Index (NDII), Difference Index 

(DI), wetness component of Tasseled Cap, and LAI. Finally, categories were classified (I.-V.: 

significant increase  –  decrease in forest health). As a result, ground-based LAI correlated 
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mostly to NDII, DI, and Wetness component of Tasseled Cap with R2=0.57–0.63 and the 

method showed 15% of damaged forests (Lukeš et al., 2018). 

This method was developed and extended into a monitoring system having four main 

components: the most important one is PlanetScope satellite image collection (with 3x3 m 

spatial and 1-day temporal resolution) used for calculating VIs, and the second one is Sentinel-

2 data for tree species classification and ICP Forest monitoring plots for its validation. 

Orthophotos and maps of clearcuts made by ÚHÚL are the third and fourth components of 

the system used to exclude misclassification of damaged forests due to forest operations. 

Based on these components plus LIDAR and base map datasets, 20 different layers are 

available on their geoportal (http://geoportal.uhul.cz/mapy/MapyDpz.html) (Figure 11). 

 

Figure 11. Forest state near Olomouc in 2018 from the Czech forest monitoring system.  

The forest state and development maps are categorized into groups. The forest health 

state is described by annual LAI composite maps from 2015 and changed by four classes (state 

increment, steady-state, slight decrease, significant decline) showing differences between 

years. There are dedicated maps to the European spruce bark beetle (Ips typographus L.), 

which endangers 80% of Czech forests by attacking Norway spruce (Picea Abies), Scots pine 

(Pinus syvestris), silver fir (Abies alba), douglas fir (Pseudotsuga menziesii) and European larch 

(Larix decidua) as well. ÚHÚL created two separate geoportals called bark beetle maps (found 

http://geoportal.uhul.cz/mapy/MapyDpz.html
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at: http://www.kurovcovamapa.cz) and bark beetle info (available at: 

http://www.kurovcoveinfo.cz/), where remotely sensed and ground collected data is visible.  

The Global Change Research Institute (CzechGlobe) of the Czech Republic has a service 

called Mapserver where hyperspectral, LiDAR, orthophoto, thermal, and other thematic data 

is published (CzechGlobe, 2019) for 55 areas of the country on certain dates, where ecosystem 

types are categorized into the forest, urban, agro-ecosystem and water classes. Datasets can 

be visualized by selecting them, in the forest ecosystem menu, carotenoids, chlorophyll, water 

content and LAI values are published on the webpage: 

http://mapserver.czechglobe.cz/en/map.  

Hlásny et al. (2014) examined the heat and drought stress in oak and beech forests by 

MODIS-based NDVI for the years between 2000 and 2010 and explored differences in stress 

response connected to climate change. 21 experimental plots were established with data 

about the site: altitude, slope, aspect, age, density, and altitudinal and horizontal distances 

from meteorological stations. 121 MODIS pixels covered the same area. Dry periods were 

examined carefully by comparing meteorological (daily temperatures and rainless days) and 

satellite data by regression fitting and correlation coefficients showed strong connections. 

NDVI curves also declined significantly during the dry periods, thus the method is suitable for 

indicating variations in NDVI, but not for verifying climate change, according to the authors.  

2.8.2.3. Polish forest monitoring system 

The Polish Forest Research Institute (Instytut Badawczy Leśnictwa) runs a mapping portal that 

offers a wide range of products divided into ten categories (IBLES, 2019), which contains 

several map layers. Categories are the followings: regional boundaries by IBL, regional 

boundaries by Warsaw University of Life Sciences, ForBioSensing project results with Digital 

Terrain Models, monitoring of Polish forests by defoliation and monitoring points on two 

levels, monitoring of mountains forests, forest protection prognosis and others. These 

datasets are both from ground-based measurements and satellites. 

Hawryło et al. (2018) in Poland made a study focusing on Scots pine (Pinus sylvestris) 

defoliation with the method of machine learning. 50 field plots were chosen based on Landsat 

EVI values, where defoliation was observed and given in % values. The remote sensing data 

http://www.kurovcovamapa.cz/
http://www.kurovcoveinfo.cz/
http://mapserver.czechglobe.cz/en/map.
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contains Sentinel-2 tiles from 2015 and 2016, and three methods were chosen for creating 

regression and classification models: k-Nearest Neighbours (kNN), Random Forest (RF), and 

Support Vector Machine (SVM). These methods were tested with 23 different vegetation 

indices, which gave 38 predictor variables after running the best predictor selecting algorithm. 

MERIS Terrestrial Chlorophyll Index (MTCI), and Green Normalized Difference Vegetation 

Index (GNDVI) proved to be the most important ones (with 79-100%) in all three methods. But 

moderate accuracy was shown by all stand defoliation regression models (R2=0.53-0.57). The 

study showed that other indices than NDVI are more robust and sensitive to forest changes. 

Bartold (2012) showed the effect of large-scale abiotic damage, in a hurricane in a Polish 

forest where large areas were severely damaged. The large time scale (11 years) allowed him 

to use the Corine Land Cover database for validation, which showed where the forest 

disappeared. Firstly, MODIS NDVI values were compared before and after the disaster, then 

calculated Moisture Stress Index was calculated and finally Tasseled Cup transformation was 

applied to gain information in four channels: brightness, greenness, wetness, and vegetation 

condition. All three methods were tested for all pixels and after converted the rasters to 

vectors to be comparable with control data. The results with very high accuracy (96%) showed 

the utility of the methods. 

2.8.2.4. Slovenian forest monitoring systems 

The Slovenian Ministry of Agriculture, Forestry and Food have a Public Graphical Data Viewer 

system (http://rkg.gov.si/GERK/WebViewer), which contains several map layers connected to 

forests (MKGP, 2019), like orthophotos, actual land use of agricultural and forestry maps 

(RABA), digital terrain models (DDM), hydrological maps, pedological maps and so on.  

 The forest data viewer of the Slovenian Forest Service (ZGS, 2019) offers eight large 

map categories with maps of forest regions, units, characteristics, ecological functions, social 

functions, production functions, areas affected by damage, and cartographic base. Damage is 

displayed by time and cause. 

2.8.2.5. Finnish forest monitoring system 

Saarinen et al (2018) examined the opportunities in Finland by creating a dataset of 30 076 

images in 185x185 km tiles and 30x30 m resolution from 45 years and all Landsat satellites (1–

http://rkg.gov.si/GERK/WebViewer
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7) were used in this research. Filtering was applied to have pictures that are suitable for forest 

monitoring. In the temporal scale, it means the vegetation season peak (±30 days of August 1 

in the northern hemisphere summer) and in the spatial scale excluding cloudy pixels. The 

dataset acquired by this method contains gaps but Saarinen et al. also pointed out that 

Landsat and Sentinel-2 satellite image combinations are possible since robust compositing 

algorithms exist, and there is spatial and spectral complementarity between these satellites. 

With all these remote sensing data field monitoring plots can be complemented with new 

information for forest monitoring. 

2.8.2.6. German forest monitoring system 

The German Forest Condition Monitor (in German: Waldzustandsmonitor, 

https://waldzustandsmonitor.de/en/forest-condition-monitor/) was made to visualize the 

condition of forests in Germany and Europe. MODIS 8 days NDVI composites are used to 

determine the greenness of the vegetation and compared to long-term observations 

(Waldzustandsmonitor, 2019). The greenness is described by relative and absolute values as 

well. The quantiles represent the positive and negative extreme values, which can indicate 

favourable or unfavourable (forest damage) environmental conditions, while they represent 

the absolute deviation of the greenness from the long-term mean value in percent. These 

maps are available for the whole of Europe in the selected years of 2003, 2015, and 2018, 

when extreme drought damage happened (Buras et al. 2020, 2021). 

2.8.2.7. Norwegian forest monitoring system 

The Kilden system of the Norwegian Institute of Bioeconomy Research consists of online maps 

for multi-purposes, one of them is the forest portal (“Skogportalen”, https://kilden.nibio.no/), 

where dedicated maps can be made for bark beetle The Kilden system of the Norwegian 

Institute of Bioeconomy Research consists of online maps for multi-purposes, one of them is 

the forest portal (“Skogportalen”), where dedicated maps can be made for bark beetle alerts 

in Southern Norway. Two thematic layers show the probability of damage in percentage for 

each 10x10 m Sentinel-2 pixel and the 1x1 km squares with aggregated damage. Both are 

coloured according to the severity on a scale from white to dark red, where dark red stands 

for the highest probability of damage. These probabilities are calculated in a program written 

in Python language using the Extreme Gradient Boost machine learning method to classify 
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each pixel into the clearcut, healthy forest, and damaged forest categories based on ground-

based and aerial datasets. The maps are automatically updated whenever new satellite images 

are available (Figure 12). 

 

Figure 12. Kilden system shows damaged forest stands based on Sentinel-2 images around 

Hvittingfoss, Southern Norway in August 2021. 

2.8.3. Forest monitoring systems  worldwide 

The Global Forest Watch (GFW, https://www.globalforestwatch.org), 2019) of the USA is an 

online platform providing the largest dataset in the world for monitoring forests in real-time 

giving information about where and how forests are changing around the World. The global 

and local datasets are shown on maps, analyses, and dashboards in several classes like forest 

change (gain, loss cover, deforestation, and fire alerts), land cover change (tree cover, land 

cover, plantations), land-use changes (logging, mining, mills, gas concessions, dams, roads, 

population density), climate change (CO2 emissions, biomass density, soil C density, C storage), 

biodiversity (hotspots, extinction sites, conservation landscapes, and areas). On the 

interactive maps, countries or counties can be selected for detailed analysis with graphs and 

they can be downloaded in Excel tables. 

https://www.globalforestwatch.org/


10.13147/SOE.2023.016

 

43 
 

The ForWarn II was made by United States Department of Agriculture (USDA) Forest 

Service (2020) and used as a vegetation change recognition and tracking system which 

provides near real-time change maps for the United States of America updated every eight 

days made of MODIS NDVI data. Biotic, abiotic damage, antropogentetic and meteorological 

disturbances are visible on these maps and with the tracking system, the recovery plus the 

cumulative effects of multiple disturbances over time are also detectable. From 2000 till today 

46 NDVI maps are published every year using the 24-day window rule. Forest health decline 

was monitored systematically in the last few years by Norman & Christie (2020) and evidence 

of forest stress was proved as well. The monitoring will continue in the new version of the 

system, the ForWarn III based on Sentinel-3 since 2022. 

Other monitoring systems are not open to the public in 2021 such as the one in Australia 

called the Continental Forest Monitoring Framework (Wood et al., 2006), in Canada the 

National Deforestation Monitoring System (CNDMS, 2015), and in Russia the KEDR (WWF 

2017). The KEDR utilizes GEE algorithms to automatically compare multi-temporal satellite 

images in a pixel-by-pixel way, and the imaginary database is explained with statistical values, 

thus the system can detect deviations from the median values for each pixel. This information 

is sent in real-time to rangers to identify and respond to violations of forestry legislation.  

In Africa and South America, the GEE was also utilized for forest monitoring, for example 

in Ghana (Osei et al., 2019), Mozambique, Peru, and Bolivia (Hamunyela et al., 2020). The 

Global Forest Watch also utilizes GEE, which is available for all the above-mentioned countries.  

2.9. Forest damage types 

Forest damage can be divided into three groups according to its origin. Abiotic damage is 

caused by non-living, natural factors such as wind, snow or fire. They are often triggered by 

certain meteorological and climatological events, like forest fire could be caused by drought 

(Tobak et al., 2017) or flood is by extra amount or intensity of precipitation. While biotic 

damage is caused by living creatures such as insects, fungi, viruses, or bacteria. Under 

unfavourable abiotic conditions trees are more vulnerable to biotic agents as well, thus these 

damage types are connected in certain cases (Teshome et al, 2020). Eventually there are 

anthropogenic damage as well caused by humans, which can be done by inexpert forestry 

operations, infrastructure construction or illegal logging. 
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3. Material and methods 

This section contains the description of study sites, the general application of Sentinel-2 

images for Hungary, and the specific method developed in this Thesis based on GEE. The time-

series analysis also contains methods for evaluating maps, graphs, and tables. Machine 

learning is also briefly described in this section which is applied for tree species classification 

and the validation sets are also presented. These ground-based datasets contain abiotic and 

biotic damage types, and a damage threshold was created to identify them. Eventually, in the 

confusion matrix, the RS and ground-based datasets were compared. 

3.1. Study sites 

In this thesis forest health was studied with remote sensing methods in three selected study 

areas: Nagyerdő of Debrecen, Farkas-erdő of Sárvár, and Central Bükk (Figure 13) (Table 4). 

These areas differ in size (1092, 5665 and 49152 ha), terrain (plain and mountainous), location 

(eastern, western, and northern parts of Hungary), and typical forest communities (oak with 

Lily of the valley (Convallario-Quercetum roboris), oak-hornbeam (Querco robori-Carpinetum), 

submontane beech (Melittio-Fagetum) as well. The study areas were selected to represent 

typical forest ecosystems of Hungary and also due to accessibility and data availability 

(forestry database, site descriptions, field reports). The Nagyerdő is easily accessible (in the 

city of Debrecen), relatively small, flat and dominated by oak, which made it ideal for 

monitoring. While the Farkas-erdő on the other side of the country is larger and has mixed 

forest communities, the location also plays role since the headquarters of the Hungarian 

Forest Research Institute are in Sárvár, close to the forest. While the mountainous Bükk is the 

largest contagious forest in the country and several forest studies took place there in the past, 

also serious forest damage happened in the past few years which made it an interesting place 

to be monitored. 
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Figure 13. Study areas of the thesis: Farkas-erdő (west), Central Bükk (north) and Nagyerdő of 

Debrecen (east). 

Table 4: Characteristics of study sites. 
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Name Nagyerdő Farkas-erdő Központi-Bükk 

Area (ha) 1092 5665 49152 

Forest microregion Nagyalföld  Nyugat-Dunántúl Északi-középhegység  

Forest mesoregion Hajdúság (West), 

Nyírség (East) 

Kemeneshát Bükk  

Forest microregion Hajdúság (West), 

Nyírség (East) 

Kemeneshát Központi-Bükk  

Forestry Authority Nyírség Forestry 

PLC. 

Szombathely Forestry 

PLC. 

Északerdő 

Forestry PLC. 

(East) 

Egererdő 

Forestry 

PLC. (West) 

Forest 

management unit 

Debrecen Sárvár Lillafüred, 

Délbükk, 

Keletbükk 

Eger, 

Felsőtárkány 

Szilvásvárad 

Protected Yes Yes Yes 

Climate Sessile-oak –  

Turkey- oak type 

Hornbeam- sessile oak 

type 

Beech and hornbeam- 

sessile oak type 

Topography Plain Mostly plain, partly 

hilly 

Mountainous 

Forest 

communities 

Oak with Lily of the 

valley 

Oak-hornbeam 

Turkey oak - Sessile 

oak 

Submontane beech 

Oak-hornbeam 

Turkey oak - Sessile oak 

Lime-ash 

Ravine forests  

Rocky forests 

 

Since the study areas differ not just in the geographical conditions but in the tree species 

composition as well, a query was made from Hungarian National Forestry Database to determine the 

five dominant ones in each forest giving information about tree species name, code, area and the 

number of compartments (Table 5). 

Table 5: Dominant tree species of the study sites expressed in area and percentages. 
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Nagyerdő Farkas-erdő Central Bükk 

Tree species Code area area area area area area 

(ha) (%) (ha) (%) (ha) (%) 

Black locust A 66.85 6.12 505.68 8.93     

European 
beech 

B         16634.75 33.84 

Hornbeam GY         2295.32 4.67 

Norway 
spruce 

LF         1112.03 2.26 

Pedunculate 
oak 

KST 653.81 59.87 1531.71 27.04     

Red oak VT 150.33 13.77         

Scots pine EF 66.49 6.09 734.48 12.97     

Sessile oak KTT     705.97 12.46 20201.75 41.10 

Turkey oak CS     989.01 17.46 3475.67 7.7 

Other   154.52 14.15 1197.77 21.14 8835.22 11.05 

Total   1092 100 5664.62 100 49152.11 100 

Dominant tree species were filtered from the Hungarian Forest Database based on the 

index (‘jelzőszám’ in Hungarian, JSZ shorty) and tree species mixture (‘elegyedés módja’ in 

Hungarian, ELM shorty) attributes referring to forest stand levels where the selected number 

1 stands for “first or only forest stand level, or first and only topmost stand-level” and “main 

species” (FAFN) according to the list of forestry description sheet (‘Leíró lap nyomtatvány 

kódjegyzéke’). For the filtering, the topoXMap 1.22.3.1 software was used and the five most 

frequent species were selected (Table 5). In this example Scots pine (EF code) was filtered 

from the database with the following code line (Code 1):  

[efafs.JSZ] = "1" & [efafs.ELM] = "1" & [efafs.FAFN] = "EF" 

Code 1. Tree species selection from the Forestry Database by index, mixture and name. 

where efafs is the Forestry Database with species code, JSZ is index and ELM is mixture and 

FAFN is the tree species name.  

3.1.1. Nagyerdő of Debrecen  

The Nagyerdő (“Grand Forest”) is situated inside the administrative border of Debrecen, 

northwards from the centre, on a 1092 ha large area (HNP, 2020). Geographically it lies at the 

meeting of three microregions: Hajdúhát, Dél-Hajdúság and Dél-Nyírség. On the loess and 
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sandy soils, there were favourable water supply conditions and large coherent forests, which 

only remained nowadays in smaller patches after the second world war, river regulations, and 

forest cutting. Typical forest communities were willow (Salicetum tríandrae), willow-poplar 

gallery forest (Salicetum albae-fragilis), oak-ash-elm gallery forest (Fraxino pannonicae-

Ulmetum), oak-hornbeam (Querco robori-Carpinetum), open oak forest on sand (Festuco 

rupicolae-Quercetum roboris), and oak with Lily of the valley (Convallario-Quercetum roboris) 

(Gencsi, 2021). 

Pedunculate oak with Lily of the valley (Convallaria majalis) is the most important and 

typical community, in which the indicator species marks habitats with partial shade, warm 

summers, and moderately alkaline silty or sandy soils with a plentiful amount of humus. While 

gallery forests disappeared after the water regulations and water level decreased (Zöld Kör, 

2019). 

The Nagyerdő has been used for 700 years and the degrading condition in the 19th 

century demanded renewal of forest management. In 1939 a 31 ha large part of the forest 

was nominated for nature protection area which was expanded in the next decades, resulting 

in that 1992 the whole forest is under protection with 1092 ha under the supervision of 

Hortobágy National Park marked as Nagyerdő TT (249/TT/92). 

The local forest management authority is the Debrecen Forestry Unit of Nyírerdő PLC. 

which handles a 9457 ha area, from which 7498 ha is inside the municpality borders. The 

regulatory authority of the Nagyerdő is the Government Office for Hajdú-Bihar County 

Forestry Directorate, based in Debrecen (Nyírerdő, 2020). The currently existing forest 

management plan from 2017 consists of forest compartments of Debrecen from 34-73, with 

protection as a primary function, and park-like forest as a secondary function under the 

protection of the Natura2000 area of EU with cutting and transitory tree utilization modes.  

The forest tree composition includes several species, but the most important, largest 

(20-30 m high), and eldest (100-300 years) pedunculate oaks (Quercus robur) can be found in 

the old forest (Figure 14). Domestic compound species are silver poplar (Populus alba), wild 

cherry (Prunus avium), Tatar maple (Acer tataricum), field maple (Acer campestre), field elm 

(Ulmus minor), wych elm (Ulmus glabra), European crab apple (Malus sylvestris), European 

wild pear (Pyrus pyraster), large-leaved lime (Tilia platyphyllos) and silver lime (Tilia 

tormentosa). The foreign species are black locust (Robinia pseudoacacia), Scots pine (Pinus 

sylvestris), and northern red oak (Quercus rubra). Under the trees, special flowers can be 
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found such as the Lily of the valley, Turk's cap lily (Lilium martagon), a lesser butterfly-orchid 

(Platanthera bifolia), white helleborine (Cephalanthera damasonium), steppe iris (Iris aphylla 

subsp. hungarica).  

 

Figure 14. Dominant tree species of Nagyerdő. 

3.1.2. Farkas-erdő of Sárvár 

The Farkas-erdő (“Wolf Forest”) lies between the settlements of Sárvár and Káld on a 7200 ha 

large area, in Western Hungary, being the largest forest in Vas county. The 5500 ha large 

contiguous part of the forest south of Sárvár is protected. The mixed oak-beech-hornbeam 

forest belongs to the Sárvár Forestry Unit of Szombathely Forestry PLC. (Szombathelyi 

Erdészet, 2020).  

The most typical forest communities are oak-dominated ones: Quercetum petreae-cerris 

and Querco robori-Carpinetum, while the most important tree species are pedunculate oak, 

and sessile oak, Turkey oak, European beech, European hornbeam, black locust, and Scots 
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pine (Figure 15). The forest was famous for the 300 years old large, pedunculate oaks called 

hagtrees (‘banyafa’ in Hungarian) and the red deer (Cervus elaphus) colony.  

 

 

Figure 15. Dominant tree species of Farkas-erdő 

3.1.3. Central Bükk 

The Bükk Mountains are located in Northern Hungary on a 100.000 ha area which is the largest 

contiguous forest body in Hungary and is entirely protected by Bükk National Park Directorate. 

The Central Bükk studied in this Thesis covers around half of this area (52,000 ha) and is 

managed by two forestry companies, Egererdő PLC. (on the west side) and Északerdő PLC. (on 

the east). Both have three-three forestry units such as Eger, Szilvásvárad, Felsőtárkány 

belonging to Egererdő, and Lillafüred, Délbükk, Keletbükk to Északerdő. 

Due to the various types of elevation (200-900 m), slope, and aspect conditions almost 

every type of Hungarian forest community can be found here (Egererdő, 2021), and the 

dominant tree species are European beech (which the mountain was named after in 

Hungarian) and Pedunculate oak covering 2/3 of the forested areas (Északerdő, 2021) (Figure 

16). 
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The zonal distribution of forest communities is visible in form of belts in the Bükk 

Mountains (Vojtkó, 2002). At the height of 250 – 400 m, Turkey oak - Sessile oak (Quercetum 

petraeae-cerris) forest can be found which has the largest extent as a community in Bükk 

Mountains. The main species are mixed with several species like chequers (Sorbus torminalis) 

and field maple (Acer campestre) wild pear (Pyrus pyraster) and wild apple (Malus sylvestris). 

This belt is followed by the hornbeam-oak stands (Carici pilosae-Carpinetum) between 400 – 

600 m. Even higher submontane beech forests (Melittio-Fagetum) can be found mixed with 

sessile oak (Quercus petraea), hornbeam (Carpinus betulus), sycamore maple (Acer 

pseudoplatanus), Norway maple (Acer platanoides), silver birch (Betula pendula), and 

European ash (Fraxinus excelsior). 

On special terrain conditions, we can find different communities like in steep ravines 

ravine forests (Phyllitidi-Aceretum), on the mountain tops lime-ash (Tilio-Fraxinetum 

excelsioris), or rocky beech forests (Seslerio hungaricae-Fagetum) with ice-age relicts. Bedrock 

also affects the distribution of forests creating brooms-oak (Genisto pilosae-Quercetum) or 

acidofrequent oak stands (Luzulo-Quercetum). 

Water availability has also of great importance, theisare xerophile (drought tolerant) 

communities dominated by downy oak (Quercus pubescens) in stands with mahaleb cherry 

(Ceraso-Quercetum pubescentis), another type of oaks (Corno-Quercetum), or false-brom 

(Cirsio pannonici-Quercetum). With more water, supply willows (Salicetum albae-fragilis) and 

alders (Aegopodio-Alnetum) grow mixed with European ash (Fraxinus excelsior) or European 

white elm (Ulmus laevis). 
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Figure 16. Dominant tree species of Central Bükk 

3.2. Sentinel-2 satellite imagery 

The number of available Sentinel-2 images for Hungary is a crucial part of the monitoring 

system. According to the map of Barton et al. (2017b) about the number of cloud-free 

Sentinel-2 images, it seems clear, that both Bükk Mountains and Farkas-erdő of Sárvár are 

covered with a few (9-16) cloud-free images between 2015 and 2017. Nagyerdő of Debrecen 

is better with 22-28 images. This has great importance in setting the thresholds for cloud cover 

masking and the creation of time series. I used S-2 L2A imagery (with both Sentinel-2 A és B 

satellites) which is available for Hungary since 2017 in GEE, where tile 33 TXN covers Farkas-

erdő, 34 TET does Nagyerdő and 34 UDU does Central Bükk (Figure 17). 
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Figure 17. Sentinel-2 tiling grid in Hungary.  

3.3. Google Earth Engine 

3.3.1. General description 

The reason behind choosing GEE for this Thesis was the quick and flexible processing capability 

which is ideal for research purposes. Huge asset is the online storing, computing and 

visualizing capacity of the system which helped to avoid a lack of storage capacity on hard 

disks and buying expensive hardware and software to perform geospatial analysis. Google also 

provides wide range of online datasets and tutorial material which helped a lot in the coding 

and fastened the whole monitoring process. On the other hand, several questions emerged in 

connection with GEE which had to be tested in practice such as: 

• platform: if it is suitable for running a wall-to-wall forest monitoring system, 

• computing capacity limits: achieving monitoring goals without exceeding limitations, 

• data policy: uploading and downloading non-public data, 

• data security: public version without sharing the code. 
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3.3.2. Algorithm 

As a novel approach to Hungarian forest monitoring, I created a GEE-based method in the 

code editor (dashboard) to make maps and charts. This algorithm is written in JavaScript 

language and consists data query, filtering, masking, reduction, visualization and export as 

well. The steps of processing can be seen in the flowchart (Figure 18). 

 

Figure 18. GEE system flow chart for Hungarian forest monitoring. 



10.13147/SOE.2023.016

 

55 
 

The flowchart contains these elements of the monitoring: 

• Data collection query: Sentinel-2 surface reflectance collection (10x10 m) on which 

filtering and masking were applied 

o bound filtering: set Region of Interest (ROI) by shapefiles 

o time filtering: set start and end date (04.01-10.30.) 

o cloud filtering: bitmask with band QA60 (cloud mask, 60x60m) 

o forest masking: by Hungarian forest boundaries and ESA forest cover mask 

(10x10 m) by shp 

• Reducing collection: minimum, mean, median, maximum, and standard deviation 

(std) with image reducers 

• Calculating vegetation indices: NDVI, NDVI ch, Z NDVI, NDWI, EVI. 

o Reducing vegetation indices: NDVI mean, NDVI median, NDVI std. 

o Comparing years:  

▪ by subraction → ch NDVI 

▪ by standardization → Z NDVI 

• Visualization parameters: palettes, borders, bands (colour, width, centre, etc.) 

• Display 

o Display in GEE platform: RGB and VI maps and charts 

o Public display by App Engine 

• Image export 

o maps to Google Drive in TIFF format 

o charts in CSV and PNG for further analysis.  

3.3.3. Spatial filtering  

Proper filtering of the Sentinel-2 L2 SR dataset (Google, 2020a) by boundary is needed at the 

initial stage to set Region of Interest (ROI) aiming to work with data that is interesting for us. 

For this, we can use built-in datasets like international boundary polygons 

(USDOS/LSIB_SIMPLE/2017 collection) or global administrative unit layers (Google, 2020b). In 

the case of the Hungarian state border, OpenStreetMaps were used (OSM, 2021). Spatial 

filtering also means forest masking in this case, described in the next chapter. 
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3.3.4. Forest masking 

Forest masking is a crucial part of the monitoring system. Both vector and raster-based 

solutions can be utilized depending on the goal. The below-mentioned datasets are not yet 

available directly in GEE, but by downloading from the website and uploading to the GEE it is 

possible to utilize them even in combined form. 

One solution is the usage of vector polygons. To get the most accurate forested area the 

forest compartment polygons created by Forestry Companies were filtered by type not to 

contain the ones which do not cover actual forests like roads (ÚT), openings (NY) , clearings 

(TI), buildings (ÉPÖ, feeding ground (VF), water bodies (VI), barren earth (TN), shrubs (CE), 

other forestry establishments (EY). These compartments belong to areas serving forestry 

activities and areas that belong to forestry establishments but are not covered by forest. In 

the Hungarian Forestry Management Guide (NFK, 2004) these codes refer to the filtered areas: 

ÚT, NY, TI, ÉP, VF, VI, TN, CE, and EY. 

Raster-based forest masks could be also used such as high-resolution forest layers of 

Copernicus (2021), which consist of three types of status products and two types of change 

products at 10x10 and 20x20 m resolution. These are available for 2012, 2015, and 2018 and 

2012-2015, 2015-2018 respectively. There are Tree cover density (TCD) (level of tree cover 

density, 0-100%), Dominant leaf type (DLT) (broadleaved or coniferous majority), and Forest 

type product (FTY), which is a combination of the dominant leaf type, the size of at least 0.5 

ha, 10% tree cover density, plus trees under agricultural use from Corine Land Cover (CLC). 

Besides the status maps change layers are also available such as Tree Cover Change Mask 

(TCCM) and Dominant Leaf Type Change (DLTC). 

I have used both methods for different reasons. The polygons are more accurate and more 

frequently updated but also have bigger sizes, which could cause problems after a certain limit 

in GEE, yet suitable for sample areas. While rasters are smaller and could be loaded faster, 

thus they might be more suitable for country- or continent-wide monitoring, on the other 

hand for certain functions they must be converted to vectors. I tried different methods, see 

the method of country wide maps in chapter 3.9. 
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3.3.5. Temporal filtering  

In the case of time series, the size of data is always considered for filtering. Setting the proper 

start and end date of the image collection is advised to process only useful data. In the case 

of forest monitoring, the vegetation period (or growing season) is the window from spring to 

late autumn to exclude the months when photosynthesis is low or does not occur at all. 

The growing season length (GSL) varies depending on geographical location and in 

Hungary is supposed to be between mid-April and the end of September as we applied in 

TEMRE. However several studies were made to prove that GSL could be longer. According to 

Garonna et al. (2015) the GSL increased significantly by 18 – 24 days/decade over 18 – 30% of 

the area of Europe, depending on methodology, but observed both by satellite and ground-

based observations. I observed on my GEE graphs made of NDVI time-series of study areas (in 

chapter 3.5) that GS ends around mid-October instead of the previously used end of 

September, thus at least two weeks longer. 

The start of the growing season (SOS) is also shifted earlier by weeks as Hamunyela et al. 

(2013) stated in their research and the satellite SOS estimates derived from NDVI time series 

of MODIS data and ground observations showed the same results. The change of SOS is not 

visible on my graphs thus I expanded the time window from 15.4 – 1.10 as it was in TEMRE to 

01.04  –  31.10 to have more cloud-free data. 

3.3.6. Cloud masking 

A perfect Sentinel-2 cloud masking solution does not exist yet, but the QA60 band is suitable 

for filtering suggested by Google (2020c) developers. Bits 10 and 11 of QA60 refer to clouds 

and cirrus, where flags should be set to zero indicating clear conditions. Prefiltering is also 

advised by Google setting CLOUDY_PIXEL_PERCENTAGE property with ee.Filter.lte function. 

The percentage was set to less or equal to 5 % in every case except Central Bükk in 2017 where 

it had to be increased to 20% to have available images, otherwise, a data gap occurred. The 

combination of a bitmask and a cloudy pixel percentage proved to be a suitable method even 

in this above-mentioned case.  
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 Another solution is setting cloud probability with which clouds can be mostly 

removed (Google 2020c). An advanced solution, the Fmask (Function of mask for cloud 

filtering) 4.0 has been implemented for Sentinel-2 (Qiu et al., 2020) and in GEE too, however, 

it was not created originally for this satellite, and there is a need to make it available for this 

type of dataset as well. 

3.3.7. Collection reducing  

Reduction of the collected dataset (i.e., image collection) is necessary due to the computing 

limitations of GEE. This method is called ee.reducer() creates a single image from several 

images based on minimum, maximum, minMax, mean, median, or standard deviation. For 

forest monitoring, all of them are useful while calculation of spectral indices takes place, 

especially indices where current values are compared to aggregated long-term values. This 

image reduction has high importance and often solves capacity problems, which are listed in 

chapter 5.8. about GEE limitation.  

3.3.8. Calculating vegetation indices 

Using the reduced images one could calculate VIs like NDVI, NDVI change, Z NDVI, EVI, and 

NDWI in my case. Some are available as separate bands or with a shortcut function like NDVI 

with ee.image.normalized difference() (Code 2) , other indices (Z NDVI, EVI) have to be created 

with combinations of mathematical operators (like add(), subtract() or divide()) or with 

ee.image.expression() where the formula is described in a variable. Image.expression() was 

used for more complicated formulas such as EVI (Code 3): 

.normalizedDifference(['B8', 'B4'])  

Code 2. Computation formula of NDVI with normalizedDifference() function. 

var evi = image.expression( 

    '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', { 

      'NIR': image.select('B8'), 

      'RED': image.select('B4'), 

      'BLUE': image.select('B2') }); 
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Code 3. Computation formula of EVI with an image.expression function. 

3.3.9. Visualization parameters 

Proper visualization of maps helps the developer and the users to easily evaluate their content 

of them. For the VI raster maps, it is typical to use colour palette. In the case of my maps from 

red to green palette was used where red marks the lowest NDVI values, orange the lower, 

yellow is the middle ones, while light green stands for higher and dark green for the highest 

values. These can be set in a variable for maps and referenced by name: palette: ['red', 

'orange', ’yellow’, ’green’, ’dark green’]. Satellite image bands can be selected to be visualized 

such a true colour (red, green, blue  – RGB) image too like B4, B3, and B2 in the case of 

Sentinel-2 referring to real red, green and blue colours (Figure 20). The vector maps also can 

be coloured like the border of ROI by attributes of line width, filling colour, and transparency. 

 

Figure 19. True colour map of Central Bükk in 2021. 

Setting the centre of the map is important as well to show and zoom to the ROI, otherwise, 

by default, it will be the USA. This setting can be done in two ways: by setting 

longitude, latitude, and zoom level in Map.setCenter() function or by zooming to the centre of 

a given polygon: Map.centerObject(). I used the latter solution with the forest masks and 

country borders. 
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3.3.10. Display 

Maps can be displayed in the API below the code editor which makes it easy to check the 

results for the developers: the RGB, the VI maps, and charts are available in real-time with the 

command Map.addLayer(). While the public version of these maps could meet security issues 

since by Google App Engine (Google, 2021) it is easy to share and publish a map, on the other 

hand, it is not possible to do so without sharing the code, which is not desirable from the 

developers and data owners side. Another disadvantage of App Engine is not being free after 

the trial. 

3.3.11. Image export 

To the previously mentioned problem, one solution is exporting the data from GEE. The raster 

maps can be transferred to Google Drive or cloud storage in TIFF format, the charts in CSV, 

SVG, and PNG, the polygons in KML and Sh but tables and videos as well for further analysis 

in any GIS program. The coordinate reference system is WGS84 (EPSG:4326) at default but the 

Hungarian EOV projection (EPSG: 23700) was used in this Thesis. Limitations also occur here 

since the large files cannot be exported. For exporting files Export.image.toDrive() or 

Export.image.to cloud storage() commands can be used. 

3.4. Time-series analysis of sample areas  

The detailed time-series analysis of three Sentinel-2 satellite image-covered study areas gave 

information about the health state of forests in the years between 2017 and 2020. The NDVI 

values were smoothed with 10 days time window with. flatten() function, which converts 

feature collections into a feature collection based on date. The S2_CLOUD_PROBABILITY 

collection was merged with the S2_SR collection in this section. 

The series of analyses aimed to point out forest disturbances (damage, deforestation) and 

reforestation as well. Each dominant tree species (ten in total) got a dedicated chart, where 

NDVI data was visualized, with which I managed to discover changes in forest state.  

3.5. Machine learning 
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Machine learning is suitable for tree species classification providing maps which show the 

spatial distribution of species with high resolution. The Random Forest classifier was tested 

on a median Sentinel-2 composite of the vegetation season of 2021 to distinguish the main 

species of Nagyerdő such as Pedunculate oak, black locust, Scots pine, and red oak, plus 

clearcuts. 

The ee.Classifier.smileRandomForest function used every S-2 band in the classification and 

combined it into a single median raster as an input. The sampling approach was based on the 

manually selected training points on the WorldView RGB image provided by Google and these 

points were used as training input for tree species classification. Five classes were defined by 

the 123 points (with geometry imports function) which were based on the tree species dataset 

of the Hungarian Forestry Database, and the Random Forest classification was completed with 

the training samples (15 black locust, 22 red oak, 27 Scots pine, 40 pedunculate oak, 19 

clearcut) and 100 decision trees. The different tree species layers were also merged into one. 

The classified map was exported with the image.toDrive function to Google Drive and PC. 

3.6. Establishing the new monitoring system 

The above-mentioned studies pointed out that the 10x10 m resolution is suitable as a base for 

a new monitoring system since both biotic and abiotic damage was shown on the satellite 

images. However, the method has a rather large need for computing capacity which could 

result in exceeding available memory when the Area of Interest is too vast, the image 

collection is too dense, or the resolution is too fine. The online image analysis with algorithms 

on cloud platforms is problematic in the case of Bükk which is roughly seven times larger than 

Farkas-erdő which is also seven times larger than Nagyerdő. Due to this testing of new 

methods always started with Nagyerdő, and then transferred to other study sites.  

3.7. Analysing maps and charts 

NDVI charts were created for the period 2017-2020 using different masks based on tree 

species classes. Five classes were made of a dataset of the Hungarian Forest Database for 

Nagyerdő according to the dominant tree species: pedunculate oak, black locust, Scots pine, 

northern red oak, and other species. In the Farkas-erdő the most typical species were: 
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pedunculate oak, sessile oak, Turkey oak, black locust and Scots pine, while in Central Bükk 

European beech, sessile oak, Turkey oak, hornbeam and Norway spruce were present.  

The different coniferous and deciduous species have typically different NDVI values, they 

may also differ depending on the site conditions, thus they were analysed separately. Each 

dominant species got a dedicated curve on the graph. The NDVI values were also exported 

into a table and further filtered in the form of monthly mean composites. These monthly 

values were compared to each other with subtraction showing different types of forest 

damage. When forest damage took place according to the ground-based reports another 

column was added to the NDVI values with the specific damage type. These tree species and 

damage-specific values were calculated for all four years and all study areas. In addition, a 

mean value was added to describe the impact of each damage type, i.e., how severely 

impacted the NDVI of the forest. 

The NDVI values were tested for normality, outliers, and linear trends. Normality was 

tested with the Shapiro-Wilks test (1965) (8) on 100 randomly selected points from all four Z 

NDVI rasters of all study areas. This method was described in the original paper of the Z NDVI 

formula (Peters et al., 2002). The sample points were created with random points in the layer 

bounds and sample raster values functions of QGIS and analysed in Past 4.11 statistics 

software (Hammer et al., 2001).  

𝑊 =
(∑𝑖=1

𝑛 a𝑖 x(i))2 

(∑𝑖=1
𝑛 (x𝑖− 𝑥̅)2  (8) 

where ai is coefficient (Shapiro & Wilks, 1965) and 𝑥 is sample.  

The outlier test was made with Grubbs’ method (9) (1969) based on the largest absolute 

deviation from the sample mean in units of the sample standard deviation, according to this 

formula: 

G = max|x−u| / s  (9) 

where x stands for the actual NDVI value and u and s for sample mean and standard 

deviation, respectively. The Grubbs-test was performed in Past software which indicated if 

there were significant outliers from normal distribution. The outliers were removed from the 

samples.  
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Linear trend (10) was estimated by this formula: 

y = mx + b   (10) 

where x is the independent and y is the dependent variable, while m marks the slope of 

the line and eventually b does the y-intercept. 

3.8. Validation with forest damage reports 

3.8.1. National Forest Damage Registration System 

The ground-based dataset is from the Hungarian National Forestry database, and the forest 

protection damage reports of the National Forest Damage Registration System of which 

description can be found in chapter 2.8.1.1. 

 

3.8.2. Damage thresholds 

Thresholds were selected to focus on more severe forest damage; thus, when the damage 

frequency, ratio and intensity were above 30%, it was classified as damaged, marked with 0, 

otherwise it got 1. The 30% was based on the distribution of registered damage in the reports, 

where the majority of damage events could be categorised into two larger groups: the first 

with slight (1-30%) and the second with severe damage (60-90%). Since remote sensing is not 

suitable to detect slight damage in every case, the focus was on the more severe ones. 

Similarly, when the Z NDVI was below -0.5, it was claimed as damaged, otherwise not. 

According to these rules, every pixel was reclassified and was given a value of 0 in the case of 

damage and 1 in the case of no damage. The selection of the -0.5 Z NDVI damage threshold 

was based on empirical tests, the original scale (<-1 for damage and <-2 for serious damage) 

used in TEMRE was not suitable for most of the maps made for my Thesis (Somogyi et al., 

2018). The reason behind this was the significantly shorter time series (4 years vs 22 years) for 

calculating mean and std from NDVI and the different resolutions as well (10x10 m vs 250x250 

m, S-2 vs MODIS). 
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3.8.3. Accuracy assessment 

Accuracy parameters were calculated based on classified (RS-based) and reference (ground-

based) datasets in a confusion matrix. In this matrix every pixel is classified as true positive 

(where the model correctly predicts the positive class), true negative (where the model 

correctly predicts the negative class), false positive (model incorrectly predicts the positive 

class) and false negative (model incorrectly predicts the negative class) (Congalton 2019, 

2021).  

In the confusion matrix, True Positive (TP) signifies damage by both methods, False 

Positive (FP) signifies damage shown by the RS method but not ground-based reports, while 

True Negative (TN) stands for damaged by ground-based reports but no RS, and False Negative 

(FN) is for undamaged by both methods. In the confusion matrix, the true positive pixels show 

when the model correctly predicted the positive class (TP), while the true negatives show 

where the model correctly predicted the negative class (TN). False positive (FP) indicates the 

cases when the model incorrectly predicts the positive class. The pixel is a false negative (FN) 

when the model incorrectly predicted the negative class. The elements of the matrix are 

calculated as:  

• P = TP+ FN;  

• N = FP + TN;  

• Pc = TP+ FP;  

• Nc = FN +TN;  

• SUM = P + N = Pc +Nc. 

The matrix elements are derived as:  

• Sensitivity = Probability of true positive P(TP) = TP/P,  

• Specificity = Probability of true negative P(TN) = TN/N, 

• Precision = Positive predictive value P(TP) = TP/Pc,  

• Negative predictive value P(TN) = TN/Nc, 

• Total Accuracy = Probability of accurate classification: P(Acc) = (TP + TN)/SUM. 

Producer's Accuracy (PA) (or sensitivity) shows how often features on the ground are 

correctly shown on the classified map, while the User's Accuracy (UA) (or reliability) gives 
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information about that, how often a class on the map is present on the ground. Eventually, 

Total Accuracy (TA) is the sum of the true positives plus true negatives divided by the total 

number of individuals tested (Jensen, 1996).  

The accuracy assessment chapter (4.2.) contains the confusion matrices based on these 

calculations, where all study areas and years are described.  

3.9. Country-wide maps 

Copernicus tree cover density, dominant leaf type, forest type, and expert product maps 

are published on the Pan-European level for 2018, based on Sentinel-2 imagery and RF 

classifier. The tree cover density maps provide information on crown coverage at 10x10m 

resolution pixel level and 0-100% range (Copernicus, 2022). Filtering was applied on the 

rasters to keep pixels with at least 75% of forest cover, which was converted to vectors and 

compared to the forest map made by the Hungarian Forest Database, as reference.  

Forest masks had to be simplified due to the limitation of vertexes and distance-based 

Douglas-Peucker simplifying function of QGIS was used for that with 20 m threshold. The 

simplified polygons were corrected by fix geometries function, after they were dissolved into 

a single piece. The unnecessary attributes were deleted, and the shape was converted to WGS 

84 which the GEE can handle. 

4. Results 

In this section, I summarize the results of my PhD based on the analysis of study areas, 

accuracy assessment, statistics, time-series analysis, comparison, and expansion of methods.  

4.1. Analysis of study areas 

According to the forest protection damage reports of the NFDRS maps were made for each 

year and study sites to show ground-based damage. The results are shown on compartment 

level in chapters 4.1.1-3. 

State and change index maps were derived from S-2 composites for each year: 2017 - 2020 

and each study area in chapters 4.1.5-7. The actual condition of forests in the given year was 

described by state index maps, while the change index showed the difference between the 
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sequential years (2017-2018, 2018-2019, 2019-2020). To show deviation from four years, 

mean Z NDVI values were calculated utilizing the entire time series, showing greater inter-

annual and spatial changes, thus they were analysed in detail. 

Analysis of Z NDVI maps showed forest disturbance in several compartments of every 

study area and year. Negative changes appeared partly due to forest damage, but the most 

severe disturbances were clearcuts since they followed the borders of forest compartments. 

On the other hand, positive anomaly was detected as well after the artificial plantings on the 

area of clearcuts, and the regeneration was visible in the index values.  

Natural differences have been observed between the studied years due to meteorological 

conditions. Several forest compartments were damaged by drought and detected by both 

methods, resulting in generally lower Z NDVI values all over the forests. However, these 

differences are less evident in given years, even if that year was drier than the previous, and 

the whole forest appeared to be in worse condition according to the Z NDVI values. This can 

be due to the long-lasting effect of drought which is not always visible right after the damage.  

4.1.2. Ground-based damage of Nagyerdő 

According to the forest protection damage reports of the Hungarian National Forest Damage 

Registration System in 2017, frost damage occurred in young stands, while in 2018 and 2019, 

and 2020 (Hirka 2019, 2020) the Nagyerdő suffered from drought, frost, and game damage.  

Both geographical and temporal overlapping of different damage types is visible in the 

Nagyerdő in the case of game, drought, and frost damage as well. This damage occurs mostly 

in the Northwest and Northeast quarters, but also in the other two quarters in lower numbers 

(Figure 20). One hundred thirty-one damaged compartments were reported from the 394 

total compartments, which means 33% damage. 
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Figure 20. Aggregated damage frequency map of Nagyerdő of Debrecen based on field surveys 

from 2017 to 2020. Mostly the northern half of the forest shows considerably serious damage, 

but overall, 33% of the area of Nagyerdő was damaged for at least one year.  

4.1.3. Ground-based damage of Farkas-erdő 

According to the field data of four studied years (2017-2020), in 2017 frost and game damage 

occurred, while in 2018 and 2020 drought and game, damage was detected in several forest 

compartments. In total 277 were damaged of 1068 compartments, thus ~26% (Figure 21). 
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Figure 21. Aggregated damage frequency map of Farkas-erdő based on field surveys from 

2017 to 2020. Mostly the central part showed more severe damage, but the northern half also 

suffered from various disturbances. 

4.1.4. Ground-based damage of Central Bükk 

According to the NFPDR reports, in 2017 2235 compartments were damaged, while in 

2018 it was 573, in 2019 472 and in 2020 646 of the total 7758. The severe windfall and snow 

break (also some game damage and frost) in 2017 affected 29% of the area of Central Bükk. 

Even though the 29% seems to be large enough to be easily detected by RS and matched with 

field reports, the study area is also large (~50000 ha) and managed by two forest companies 

thus the damage reports came from different sources and the registered damage frequency 

and intensity varies from 1-100 % all around the mountain. It has to be noted as well that, for 

instance, Szilvásvárad and Nagyvisnyó is missing from the NFPDR reports and the data gap had 

to be filled by asking data from the local forestry company (Figure 22). 
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Figure 22. Aggregated damage frequency map of Central Bükk based on field surveys from 

2017 to 2020. 

4.1.5. Satellite-based damage of Nagyerdő 

From the VI composites state and change indices were derived for each year: 2017, 2018, 

2019, 2020, and 2021. The state index means the actual state of the forests in the given year 

and the change index shows the difference between the sequential years (2017-2018, 2018-

2019, 2019-2020, 2020-2021), in addition, standardized values were calculated. 

Analysis of Z NDVI maps (Figure 23) showed that the composite of the base year 2017 

indicated high Z NDVI values but areas with clearcuts and other sparsely vegetated forest 

compartments. In 2018 general Z NDVI decrement is detected (orange colour) in most of the 

forest with new red areas, standing for clearcuts following the borders of forest 

compartments. While in 2019 and 2020 generally positive anomalies is experienced on the 

maps as a result of artificial plantings after clearcuts and regeneration of less forested areas. 

Despite the general positive changes, negative ones were also noticed. New clearcuts were 

made every year, marked with red, and in 2020 the northeast part of the forest started to 

become orange coloured on the map, thus it changed negatively. The difference between VI 
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values is also due to different dominant tree species which are visible in 2017 and 2018 in the 

NW part of the forest. 

However, there is no perfect match of ground-based on RS damage, which could be due 

to natural differences between years in 2017 many forest compartments were damaged 

which is shown by both methods but 2018 was a dryer year generally where differences are 

not so evident since the whole forest seemed to be in the worse state according to the Z NDVI 

values. While 2019 was a better year with more positive values and much fewer damage 

reports, however, 2020 seemed to be worse again with more reports and lower VI values and 

a visible phenomenon in quarter NE, which is mostly pedunculate oak-dominated and known 

for being under heat and drought stress for decades already. Accuracy assessment for damage 

detection is described in Table 5, in chapter 4.2. 
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Figure 23. Annual Z NDVI composites of Nagyerdő of Debrecen in 2017 (a), 2018 (b), 2019 (c), 

and 2020 (d). Clearcuts (with dark red) drought and frost damage (orange or yellow) are visible 

on every map marking a significant photosynthetic activity drop in the given years compared 

to the long-term mean. The difference between VI values is also due to different dominant 

tree species. Regeneration was detected as well with green colours. 

Graphs were made from the time series as well, showing the median NDVI values of 

Nagyerdő between 2017 and 2020 (Figure 24). Deviations from the ideal state of the 

vegetation period can be detected when the actual values are compared to the ideal NDVI 

curve. If forest damage takes place, the shape of the NDVI curve will be changed according to 

the severity of the damage. Drought affected the NDVI curve in 2018, 2019, and 2020, which 

is visible on the graph in the form of a decline.  

A comparison of years was made with charts showing the differences in NDVI curves 

for each year. Deviations from the normal state are visible every year. In April and May 2017 

frost damaged the younglings and in August drought was experienced. Similarly in 2018 and 

2019 in June and August, drought was registered. In April, May and June of 2020 frost damage 

took place again.  
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Figure 24. NDVI median chart of dominant tree species of Nagyerdő for 2017-2020. The 

vertical red lines stand for drought events and the blue ones for a late frost. Legend: KST 

(pedunculate oak), EF (Scots pine), A (black locust), VT (red oak). 

Different tree species were detected both on the VI (Figure 23) and the Random Forest-

based classified (Figure 25) maps. Road Pallagi divides the forest into western and eastern 

halves, while an unnamed road does the same in north and west directions, resulting in four 

quarters. The presence of black locusts is outstanding in quarter NW, red oak and Scots pine, 

and black locust in quarter NE compared to more homogenous pedunculate oak-dominated 

quarters SW and SE (Figure 23). Scots pine and pedunculate oak show significantly higher Z 

NDVI values (with dark green) compared to the above-mentioned others, however at certain 

forest compartments, especially in quarter SW, larger orange areas appeared in 2020 probably 

due to drought stress (Figure 23). Visual comparison of maps of main tree species and SE 

showed that there is a connection between them, and different species react differently to 

biotic or abiotic damage resulting in different VI values. I not here that this method aimed to 

classify the most important and dominant tree species, there are several compartments with 

secondary, tertiary, or even quaternary mixed species. 
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Figure 25. Main tree species of Nagyerdő made with Random forest classification of a 

Sentinel-2 image from July 2020. 

Forest compartments differ in tree species; thus, the different VI values do not mark 

necessary damage but heterogeneity in species, which was detected both on the RF-based 

classified and the VI maps. Tree species classification of Nagyerdő by RF-based method 

showed the dominant presence of pedunculate oak in the western part of the forest while 

coherent patches of black locust, red oak, and Scots pine were detected in the eastern 

quarters of the forest (corresponding to forest compartment borders). 

The majority-based tree species comparison on forest compartment level indicated 76.1% 

accuracy in the case of five classes: four dominant tree species and clearcut. In 258 

compartments we found agreement on the species from the 339 total. It is worth mentioning 

that we aimed to classify only the dominant tree species while there are several 

compartments with secondary, tertiary, quaternary, or even more mixed species, which made 
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the result less accurate. It is also important to note that there is ongoing tree species change 

in several compartments due to nature conservation when black locust and Scots pine are 

exchanged with pedunculate oak. This process resulted in compartment-sized clearcuts and 

lower classification accuracy. removing the clearcut class and only focusing on forest-covered 

compartments. Removing clearcuts resulted in 81.79% accuracy instead of 76.1 %. 

4.1.6. Satellite-based damage of Farkas-erdő 

Composites created for the period 2017-2020 showed interesting results on its own and in 

comparison. Analysing the median Z NDVI maps (Figure 26) of vegetation periods, it could be 

stated that in 2017 (Figure 26) inside the administrative boundaries of Nyőgér, 

Bejcgyertyános, Egervölgy, Hosszúpereszteg, and Káld (central and southern part) several 

forest compartments were spotted referring to lower photosynthetic activity, marked with 

orangish-reddish colours, but generally, the majority of the Farkas-erdő was healthy with high 

Z NDVI values. The damaged forest compartments showed signs of improvement in 2018 

(Figure 26) and 2019 (Figure 27) with higher index values (greener colours), however, in 2018 

and 2019 the general state worsened which was marked by yellowish-orangish colours. In 

2019 Egervölgy and Csipkerek (southern part) forest damage took place again which resulted 

in a decline in index values. In 2020 it was still visible but with lower intensity, also new 

damage was observed in Bejcgyertyános (Figure 27). 

The severe damage and the logging showed on the map with red colour on every map, 

which is isolable clearly. However, damage with lower intensity or frequency is harder to 

detect. In 2018 and 2019 less damage can be shown on satellite images and even regeneration 

was visible in Bejcgyertyános and Csipkerek. 
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Figure 26. Z NDVI maps of Farkas-erdő of Sárvár in 2017, 2018 in the GEE monitoring system.  
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Figure 27. Z NDVI maps of Farkas-erdő of Sárvár in 2019, 2020 in the GEE monitoring system.  
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The ice break in 2017 and the drought in 2018 affected several forest stands in 

Bejcgyertyános (central part) which were visible on maps made for 2019 and 2020 as well 

(indicated with orange colour). In 2020 damage was registered in another five stands (marked 

with red), although regeneration was visible on previously damaged areas with green colours. 

Game damage was also reported from Farkas-erdő but it was not directly detectable since the 

satellites survey the canopy and the damage on the roots or trunks is not visible. Indirectly the 

foliage also shows the damaging, but it generally takes a longer time. 

When the initial state of water content in 2017 was compared to the years 2018 and 2019, 

general drought was observed in NDWI maps as well, which was followed by a wetter year in 

2020. The difference is conspicuous between the tree species as well, the coniferous stands 

have significantly higher water content compared to oak-hornbeam stands. Thus, the 

monitoring system is suitable to detect differences between tree species as well.  

The high resolution of VI maps made it possible to see changes at the compartment level 

(Figure 28). For instance, in 2019 the field surveyed damage polygons only partially agree with 

remotely sensed pixels representing mostly negative changes, although severe damage was 

shown by both the RS-based and ground-based methods. Good examples of the agreement 

are Bejcgyertyános 68A and 71A compartments, but clearcut can be seen in Bejcgyertyános 

64A, 66C, 67C, and 69B too which have low VI values, however not due to forest damage but 

to forest cover change. The weak and scattered damage is hardly detectable like in the case 

of Bejcgyertyános 64B, thus the RS has its limitations for this aim. 
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Figure 28. Forest health of Farkas-erdő of Sárvár on Z NDVI map of 2019, where differences 

are visible on subcompartment level. There is a clearcut in 69B, 67C and forest damage in 68A 

and 71A. 

Charts were created from VI values as part of the detailed analysis based on the time series 

of 2017-2020 (Figure 29). Drought was registered in August 2017, August and September 2018 

and 2019, and July and September 2020. Frost damaged Farkas-erdő in April and May of 2017. 

The drought in 2018, 2019 and 2020 was detected in the form of NDVI decline which referred 

to the decline of photosynthetic activity as well. However, the shape of the curve depends 

also on the number of utilized satellite images, which is to be improved.  
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Figure 29. NDVI median graph of Farkas-erdő of Sárvár between 2017 and 2020 in the GEE 

monitoring system. Frost and droughts are marked with vertical blue and red lines 

respectively. 

These yearly aggregated damage reports were compared to S-2 images, and in 2018 an 

NDVI break was detected in the curve, referring to a drop in the photosynthetic activity caused 

probably by the drought. While the curve of year 2019 seemed to be closer to the ideal, in 

2020 data gap was visible, thus the cloud filtering algorithms shall be improved to provide 

more cloud-free observations. 

4.1.7. Satellite-based damage of Central Bükk 

According to our previous studies made for this area, severe abiotic damage took place in 

Bükk. The natural disaster in 2017 caused by severe ice and wind damage, was examined on 

MODIS and S-2 images (Molnár et2019a, 2019b), where 4410 ha of forests were damaged. 

NDVI, EVI, and Z NDVI were calculated for Bükk Mountains and Machine Learning was applied 

as well on S-2 imagery with QGIS SCP, where the damaged forest showed out with 87.3% 

producer and 94.2% user accuracy. While the ground-based damage reports stated 0.5% 

damage to the study area, the satellites showed more, 1.8-2.2%. Digital Terrain Model was 

utilized as well to describe site conditions of the study area like elevation, slope, and aspect 
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based on 10x10 m pixels. It was visible on the -ground-based maps made for 2017, that the 

windfall and snow break made serious damage. 

The most severe damage was caused by snow break and windfall in April 201. In May and 

June, the same was reported as well as in April 2018 and 2019. While drought affected Bükk 

in August and September 2017 and 2018, and in September and October in 2019 and 2020. 

Spruce dieback was registered in September 2018 and June 2019. While different kinds of 

biotic agents damaged the Bükk, in August 2019 and 2020 presence of spruce bark beetle was 

reported, while in September 2019 and 2020 oak lace bugs appeared in larger numbers and 

caused damage. Both insects are keen to attack in waves after drought periods, which can be 

seen in these cases as well. 

By the GEE method, new maps were made for this area (Figure 30, Figure 31) and showed 

agreement with previous studies, the damage in 2017 was visible on these maps as well, 

however to a smaller extent and intensity. In the novel GEE method, 0.56 % of the Bükk area 

was damaged when Z NDVI was < -0.5. It was similar to damage reports but not to our previous 

studies with different methods, where 1.8-2.2 % damaged area was shown. The differences 

had several reasons. The resolution is finer than in the case of MODIS and the investigated 

period is only four years compared to the twenty years, which is important in the calculation 

of Z NDVI, where the long-term mean is one of the key factors.  
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Figure 30. Z NDVI maps of the Bükk Mountains in 2017 and 2018 in the GEE monitoring system. 
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Figure 31. Z NDVI maps of the Bükk Mountains in 2019, and 2020 in the GEE monitoring system. 
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The most severe damage was caused by snow break and windfall in April 2017 (Figure 32) 

in the northern part of the mountain, but in May and June, the same was reported as well as 

in April 2018 and 2019. While drought affected Bükk in August and September 2017 and 2018, 

and in September and October in 2019 and 2020. Spruce dieback was registered in September 

2018 and June 2019. While different kinds of biotic agents damaged the Bükk, in August 2019 

and 2020 presence of spruce bark beetle was reported, while in September 2019 and 2020 

oak lace bugs appeared in larger numbers and caused damage. Both insects are keen to attack 

in waves after drought periods, which can be seen in these cases as well (Figure 33). 

 

Figure 32. Z NDVI map of northern Bükk where snow break and windfall took place in April 

2017. 
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Figure 33. NDVI median graph of Central Bükk showing forest health between 2017 and 2020 

tree species like beech (B), Turkey oak (CS), hornbeam (GY), sessile oak (KTT) and Norway 

spruce (LF). Frost, drought and dieback are marked with vertical blue, red and green lines 

respectively. 

4.2. Accuracy assessment of study areas 

Confusion matrices were created for each year to compare classified Z NDVI values to 

reference ground-based damage reports at the pixel level. Thresholds were selected to focus 

on severe damage; thus, the damage frequency was > 30% and Z NDVI was < – 0.5. According 

to these thresholds, every pixel was reclassified and was given a value of 0 in the case of 

damage and 1 in the case of no damage. User’s, Producer’s, and Total Accuracy were 

calculated for all years.  

In the confusion matrix, accuracy assessment was calculated based on the classified, RS-

based and reference, ground-based datasets, where the RS dataset was compared to damage 

frequency, intensity, and ratio values as well. The calculations were made for each year and 

study site and on pixel level. 
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Nagyerdő (Table 6), Farkas-erdő (Table 7), and Central Bükk (Table 8) all differed from each 

other, but all study sites' mean total accuracy values showed that frequency has the highest 

mean TA at 78%, followed by damage ratio with 46% and damage intensity with 30%. 

Although, the damage frequency-based matrix showed altering accuracy for each year and 

study area (Table 9). Regarding each study site, Nagyerdő showed 94.3% mean total accuracy 

in the surveyed four years, while Farkas-erdő did 79.82% and Central Bükk 60.66% (Table 9).  

Table 6. Accuracy assessment of Nagyerdő for years 2017-2020 in confusion matrices, given 

in pixel and ratio (%). 

Year   2017    2018 

   Reference    Reference 

   Damaged Non damaged    Damaged Non damaged 

    pixel %  pixel %     pixel %  pixel % 

Classified  

Damaged 6811 88,71 276 3,59 

Classified  

Damaged 4879 80,34 500 0,00 

Non 
damaged 554 7,22 37 0,48 

Non 
damaged 629 10,36 65 0,00 

Year   2019    2020 

   Reference    Reference 

   Damaged Non damaged    Damaged Non damaged 

    pixel %  pixel %     pixel %  pixel % 

Classified  

Damaged 1253 100 0 0 

Classified  

Damaged 7085 92,95 514 6,74 

Non 
damaged 0 0 0 0 

Non 
damaged 22 0,29 1 0,01 

Table 7. Accuracy assessment of Farkas-erdő for years 2017-2020 in confusion matrices, given 

in pixel and ratio (%). 

Year   2017    2018 

   Reference    Reference 

   Damaged Non damaged    Damaged Non damaged 

    pixel %  pixel %     pixel %  pixel % 

Classified  

Damaged 3363 6,12 1616 2,94 

Classified  

Damaged 0 0 2579 8,36 

Non 
damaged 24054 31,81 25887 47,14 

Non 
damaged 211 0,68 28056 90,96 

Year   2019    2020 

   Reference    Reference 

   Damaged Non damaged    Damaged Non damaged 

    pixel %  pixel %     pixel %  pixel % 

Classified  

Damaged 478 1,57 1490 4,89 

Classified  

Damaged 230 0,95 334 1,38 

Non 
damaged 3087 9,33 25406 83,41 

Non 
damaged 2127 8,16 21489 88,87 
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Table 8. Accuracy assessment of Central Bükk for years 2017-2020 in confusion matrices, given 

in pixel and ratio (%). 

Year   2017 Year   2018 

   Reference    Reference 

   Damaged Non damaged    Damaged Non damaged 

    pixel %  pixel %     pixel %  pixel % 

Classified  

Damaged 8890 0,91 7722 0,79 

Classified  

Damaged 1523 0,70 3389 1,57 

Non 
damaged 360151 36,84 600741 61,46 

Non 
damaged 73661 34,07 137623 63,66 

Year   2019 Year   2020 

   Reference    Reference 

   Damaged Non damaged    Damaged Non damaged 

    pixel %  pixel %     pixel %  pixel % 

Classified  

Damaged 498 0,25 271 0,14 

Classified  

Damaged 250401 81,48 56483 18,38 

Non 
damaged 127943 65,24 67413 34,37 

Non 
damaged 409 0,13 40 0,01 

Table 9. Accuracy assessment of forest damage datasets for the years 2017-2020 in the three 

study areas, showing Producer’s accuracy (PA), Users’ accuracy (UA), Total Accuracy (TA) and 

mean values based on Z NDVI and field reports. 

Year 2017 2018 

Study 

area 
Nagyerdő Farkas-erdő Central Bükk Nagyerdő Farkas-erdő Central Bükk 

Damage 

category 
Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative 

PA (%) 98.94 1.73 13.23 94.12 0.79 99.58 98.35 1.66 0 91.59 2.02 97.60 

UA (%) 96.11 6.26 69.39 51.84 53.52 62.22 90.70 9.37 0 99.25 31.01 65.14 

TA (%) 95.13   53.51   62.17   89.36   90.97   64.36   

Year 2019 2020 

Study 

area 
Nagyerdő Farkas-erdő Central Bükk Nagyerdő Farkas-erdő Central Bükk 

Damage 

category 
Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative 

PA (%) 100 0 13.31 94.51 0.38 99.60 99.55 0.28 9.99 98.43 99.84 0.07 

UA (%) 100 0 24.29 89.17 64.76 34.51 93.24 4.35 40.78 90.99 81.59 8.91 

TA (%) 99.86   85.01   34.62   92.85   89.79   81.49   
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Table 9. Accuracy assessment of forest damage datasets for the years 2017-2020 in the three 

study areas, showing mean values of Producer’s accuracy (PA), Users’ accuracy (UA) and Total 

Accuracy (TA).  

Study area Nagyerdő Farkas-erdő Central Bükk 

Damage 

category 
Positive Negative Positive Negative Positive Negative 

PA (%) 99.21 0.92 9.13 94.66 25.76 74.21 

UA (%) 95.01 4.99 33.61 82.81 57.72 42.69 

TA (%) 94.30   79.82   60.66   

4.3. Statistical analysis 

I performed the Shapiro-Wilk test for normality on 100 randomly selected points from all four 

Z NDVI rasters of all study areas. This method was described in the original paper of the Z NDVI 

formula (Peters et al., 2002). The sample points were created with random points in the layer 

bounds and sample raster values functions of QGIS and analysed in Past 4.11 statistics 

software (Hammer et al., 2001).  

The analysis of Nagyerdő showed (Table 10), that the distribution was normal (p<5%) in 

the case of at least 95% of the points in the years 2017, 2018 and 2019 with 0.37, 0.3, and 

0.11 p values (Figure 34). In 2020 it was not (0.01) but not due to the outliers (the Grubbs test 

was performed); the distribution of bins is rather even. The W values were between 0.97 and 

0.99. 

While in Farkas-erdő (Figure 35) and Central Bükk (Figure 36), the distribution was only 

normal in 2019 and 2018 with 0.53 and 0.52 p values respectively. The other years did not 

show normality with p<5% but again not due to the outliers, and neither the distribution was 

even. Moreover, at p <10% significance level four more years had normal distribution (2020 

in Nagyerdő, 2017 and 2020 in Farkas-erdő and 2017 in Central Bükk). The W values varied 

between 0.96 - 0.99. 

Table 10. Normality tests of study areas. 
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Area Test 2017 2018 2019 2020 

Nagyerdő Z NDVI median 0.84 -0.08 0.15 0.08 

Shapiro-Wilk W 0.99 0.98 0.98 0.97 

p(normal)  0.37 0.3 0.11 0.01 

Farkas-erdő Z NDVI median 0.4 0.03 -0.09 0.05 

Shapiro-Wilk W 0.97 0.96 0.99 0.97 

p(normal) 0.01 0 0.53 0.03 

Central Bükk Z NDVI median 0.25 -0.17 -0.49 0.1 

Shapiro-Wilk W 0.97 0.99 0.93 0.94 

p(normal) 0.04 0.52 0 0 

 

 

Figure 34. Z NDVI histograms of Nagyerdő in 2017, 2018, 2019 and 2020. 
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Figure 35. Z NDVI histograms of Farkas-erdő in 2017, 2018, 2019 and 2020. 

 

Figure 36. Z NDVI histograms of Central Bükk in 2017, 2018, 2019 and 2020. 
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4.4. Time-series analysis 

Time series were suitable to be analysed in charts as well, thus we used Sentinel-2 imagery to 

show median NDVI values of study areas between 2017 and 2020. When the actual NDVI 

values were compared to the ideal NDVI curve of the vegetation period, deviations from the 

ideal state were detected. When forest damage occurred, the shape of the NDVI curve 

changed according to the severity of the damage. Most damage types affected the NDVI curve, 

which is visible on the graph in the form of a decline.  

The different abiotic damage types were analysed based on NDVI change, where the 

difference between monthly, pixel-based median values was calculated for each species 

(Table 11) and aggregated for all study sites and years. Three of the four most frequent 

damage types were shown with negative values referring to health declines, such as drought 

(-0.03), snow break (-0.02) and windfall (-0.06). Late frost always occurred at the start of 

vegetation season when NDVI increased intensely, thus the positive 0.07 mean value is due to 

that phenological phase, however in the case of Turkey-oak, Norway spruce and beech 

negative values were successfully shown.  

Table 11. Damage analysis based on NDVI time-series of tree species. 

 
KST EF A VT HNY B CS GY KTT LF mean 

drought -0.03 -0.02 -0.03 -0.02 -0.03 -0.04 -0.02 -0.03 -0.03 -0.01 -0.03 

frost 0.25 0.03 0.17 
  

-0.02 -0.05 0.01 0.21 -0.03 0.07 

snow 
     

-0.02 -0.05 0.01 -0.03 -0.03 -0.02 

wind 
     

-0.07 
 

-0.04 -0.06 
 

-0.06 

As expected, different species reacted differently to drought, frost, snow and wind. 

Beech proved to be the least tolerant against windfall and break (-0.07 value) followed by 

sessile oak (-0.06) also against the wind. Turkey oak suffered mostly from late frost and snow 

break (both -0.05). Pedunculate oak, black locust and Hungarian poplars were affected mainly 

by drought (-0.03 for all). The negative impact of drought was observed in the case of red oak, 

beech, hornbeam, Scots pine and also Norway spruce, to a different extent. Norway spruce 

was damaged by frost and snow too (-0.03 both). The differences might be considered as not 

significantly large ones, however, the magnitude of abrupt NDVI changes detected by the 
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BFAST algorithm in the study of de Jong et al. (2012) showed similar results  worldwide (-0.04 

– +0.04), between 1982 and 2008. 

Compartments also differ in tree species; thus, the different VI values do not mark 

necessary damage but heterogeneity in species, which was detected both on the RF-based 

classified and the VI maps. Tree species classification of Nagyerdő by RF-based method 

showed the dominant presence of pedunculate oak in the western part of the forest while 

coherent patches of black locust, red oak, and Scots pine were detected in the eastern 

quarters of the forest (corresponding to forest compartment borders). 

The majority-based tree species comparison on forest compartment level indicated 76.1% 

accuracy in the case of five classes: four dominant tree species and clearcut. In 258 

compartments we found agreement on the species from the 339 total. It is worth mentioning 

that we aimed to classify only the dominant tree species while there are several 

compartments with secondary, tertiary, quaternary, or even more mixed species, which made 

the result less accurate. It is also important to note that there is ongoing tree species change 

in several compartments due to nature conservation when black locust and Scots pine are 

exchanged with pedunculate oak. This process resulted in compartment-sized clearcuts and 

lower classification accuracy. Removing the clearcut class and only focusing on forest-covered 

compartments, resulted in 81.79 % accuracy instead of 76.1 %.  

4.5. Comparison to existing maps 

The new country-wide maps were compared to already existing forest maps made by the ESA 

and the Hungarian Ministry of Agriculture. Analysis of reasons for differences is needed to 

deduce conclusions for the future monitoring system which is the most accurate one. 

Ecosystem Map of Hungary (“NÖSZTÉP” in Hungarian) shows the distribution, extent, and 

frequency of ecosystems on the national level relying on existing thematic databases and 

remote sensing images (Sentinel-1 and 2) (Agrárminisztérium, 2019).  

The difference between maps of Forestry Database, Copernicus forest cover, and 

Ecosystem map was given in ha and % as well for all three study areas and it showed that 

Copernicus maps were smaller with 6.54 % in extension while Ecosystem map is also smaller 

with 10.4 %, when we take mean values of study sites (Table 12).  
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Table 12. Comparison of forest maps for Hungary. 

Study area Reference 

(ha) 

Copernicus 

(ha) 

NÖSZTÉP 

(ha) 

Difference 

between ref. and 

Cop. (ha, %) 

Difference between ref. 

and NÖSZTÉP (ha, %) 

Nagyerdő 1027.30 996.04 955.28 31.26 (3.04) 72.02 (7.01) 

Farkas-erdő 5664.62 4796.75 4548.48 867.87 (15.32) 1116.14 (19.7) 

Central Bükk 49152.11 48530.25 46946.24 621.86 (1.27) 2205.87 (4.49) 

The difference was expected since they are all based on different methods and have 

different formats: the Forestry Database units are polygons, while Copernicus and Ecosystem 

maps are rasters with 10x10 and 20x20 spatial resolution (Figure 37).  Other differences 

showed up as well on a larger scale, discussed in the next chapter. 

 

Figure 37. Comparison of three forest maps, the reference, the ecosystem, and the Copernicus in 

Farkas-erdő. The differences are visible in the extent, borders of compartments and spatial resolution. 

4.6. Country-wide expansion 
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When the forest monitoring algorithms proved to be working for the study sites, it was 

expanded and tested for the whole of forested Hungary, which is about 2 million hectares. 

However, modifications had to be done to achieve the expansion. The creation and 

visualization of maps and index charts cannot be done in the same way described in the 

methods since too many vertexes are not allowed in the AOI polygons and the imagery has to 

be resampled to a coarser resolution to be visualized on charts since the number of points in 

them is limited. 

Due to data policy and security publicly available forest masks had to be used, thus the 

polygons from the Hungarian Forestry Database were replaced with the ESA Copernicus Pan-

European forest cover maps. These 10x10 m resolution Tree Cover Density rasters were 

filtered (above 75% forest cover) and vectorized, finally, the separate tiles were merged into 

one polygon and uploaded to GEE, and the Z NDVI maps were made on country level (Figure 

38). The charts required imagery resampling, in the ee.chart function the original 10x10 m 

resolution was changed to 100x100 for the whole of Hungary (Table 13). 

Table 13. Forest maps in Hungary  

Map name Map type Area [ha] Area [%] 

Forestry Database 10x10 m rasterised 2060819 100 

Copernicus (75% Tree Cover Density) 10x10 m raster 2329707 113,05 

Ecosystem map of Hungary (trees and bushes) 20x20 m raster 2129733 103,34 
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Figure 38. Z NDVI map of Hungary in 2021 made in the GEE. 

Copernicus map differed by 13% for the whole country compared to reference but only 

1-3% for two study sites, Nagyerdő and Bükk. The Farkas-erdő was out of line compared to 

the other two site, hence it differed with 15%, which could have different reasons. 

The ecosystem map was more similar to reference, on country level it was 3% larger, 

but on study site level 4-7%, and 19%, where Farkas-erdő was outstanding again. 

Reason of differces were that Copernicus is based on RS, which is a significant 

difference compared to the Forestry Database of Hungary. RS detects which are not part of 

the Forestry Database of Hungary, also, areas with forest management plans contain non-

forested Moreover, clearcuts are detected on the exact year of the RS-based map making, 

wish are constant forest cover according to the Forestry Database.  

Eventually, the definition of forest differs as well in all cases. Tree cover reaches at 

least 50% or 30% in the case of open forest, the average height is more than two metres, and 

occupied by a stand which is legally sustainable under these criteria and has an area of 5000 

m2 or an average 20 m width (Jogtár, 2017).  

The Copernicus Tree Cover Density raster provides information on the crown coverage 

per pixel at 10m spatial resolution and ranges from 0% to 100% (Copernicus, 2022) and I 

filtered forests above 75% of TCD like in TEMRE. 

While NÖSZTÉP determinates forest as an area under forest management planning, 

including all areas classified as forest, including clearcuts. In addition, all areas covered by 

woody vegetation (e.g woody patches, forest strips, spontaneously afforested areas) belong 

here (Agrárminisztérium, 2019). 

5. Discussion 

The forest monitoring approach based on Sentinel-2 imagery was successful, although besides 

several advantages of GEE, there are some limitations as well. Utilizing the remotely sensed 

and field-surveyed datasets simultaneously in this monitoring system was possible, also in a 

semi-automatized way but improvements are needed to fix the problems before running an 

operational system on a wall-to-wall level.  
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The comparison was made on study site and country level regarding the forest maps. 

Different types of satellite data were investigated in order to inspect their suitability for future 

monitoring. Regarding further expansion, biotic forest damage shall be surveyed as well in the 

future since in this thesis I focused on abiotic ones. 

5.1. Discussion of analysis 

The combined dataset of VIs derived from satellite images and ground-based reports was 

proved to be suitable input for forest damage monitoring made in GEE. Machine Learning was 

applied also successfully on Sentinel-2 data aiming for tree species classification to support VI 

maps. The combination of cloud systems and ML shows the distribution of different forest 

types and forest damage types in all the investigated years.  

The availability of ground-based datasets was a great asset and they were compared to RS 

data, but results indicated problems too. The disadvantage of the ground-based dataset is the 

large sampling area (several hectares) compared to satellite pixels (100 m2), resulting in the 

uneven distribution of data. This different sampling method is visible when scattered pixels 

are compared to whole forest compartments. To solve this problem, mean or median values 

could be calculated on a zonal basis from the pixels for the whole compartments, but it would 

reduce the diversity of VI values significantly which makes it harder to detect any changes in 

forest health state.  

The availability of time series of ground-based data is beneficial, the another problem is 

the date of ground-based registration since if data is collected after the satellite image 

acquisition, the overlapping will not be visible on the maps dedicated to showing the same 

year. The RS could show the damage before the ground survey in time, which could be a useful 

tool to use before going out to the field. The collection period of the methods differ thus it 

happened that changes in forest state (damage or logging) were not visible always on the 

satellite images since they were created after the disturbance event, or it is visible on the 

satellite image but was not registered in the reports of the same year, only in the following 

one. However, the finer temporal resolution of satellite imagery is a huge asset in monitoring 

which can be exploited in EMMRE (chapter 2.8.1.1) in the future to detect early stage 

disturbances. 
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5.2. Discussion of accuracy assesment 

Accuracy assessment was made on pixel level for all study sites, overally with high accuracy. 

The problem with the creation of confusion matrices used for accuracy assessment was that 

while RS data was in raster format and made of pixels, damage reports were originally in 

vector thus the shape differed and also the resolution since RS pixels hold unique values but 

the converted ones from reports are homogenous within the compartments. This can be 

solved by manual field-survey with high-precision GPS devices, even on single tree level, but 

the goal of this Thesis was not that, but the study site-wide and eventually the country-wide 

monitoring which does not require that precision. Also, the labour and time demand of this 

GPS method worth to be considered before doing field survey. 

5.3. Time series analysis 

Time series were studied to find seasonality in vegetation indices, and I found some 

seasonality with high reliability, but I found problems as well. The largest problem where the 

gaps in series caused by clouds. Cloud masking partly helped in that issue, but new datasets 

should be tested. The great advantage of GEE is flexibility and resilience: with a working 

method, a new study site can be surveyed easily and rapidly if the new area is also covered by 

the same RS dataset. However mountainous areas are too often clouded to have dense time 

series when clouds don’t interfere.  

5.4. Machine Learning 

I applied the ML for tree species classification with 82% Total Accuracy. But when I studied the 

literature of forest degradation and species distribution which was studied using GEE based 

on S-2 and Landsat imagery, different accuracies appeared. A study made in Georgia by Chen 

et al. (2021a) found the UA of the forest degradation class was 69%, while PA was 83%. We 

found in the literature that in Latvian study site higher TA values were achieved (92-94% TA) 

by Siņica- Siņavskis et al. (2020) using S-2 imagery and K-means clustering and DynLand 

methods on Scots pine, Norway spruce, silver birch, and black alder (Alnus glutinosa). In Italy 

Puletti et al. (2017) obtained 86.2% TA with the RF method on four mixed forest types, 

emphasizing that the collection of multitemporal images at different phenological periods is 

required. Based on these studies, it is evident that multi-temporal imagery provided better 
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results than single images. Similar results (88.2% TA) were reported by Persson et al. (2018) 

after the classification of pedunculate oak, Scots pine, silver birch (Betula pendula), dunkeld 

larch (Larix × marschlinsii), and Norway spruce in Sweden with RF on multi-temporal S-2 

imagery. Also in Sweden, 87% TA was obtained for the same species (Axelsson et al., 2021) 

with the Bayesian inference method using S-2 images. These are also similar to my results, 

82% accuracy of species classification. 

4.2. Comparison to existing maps 

The new country-wide maps were compared to already existing forest maps made by the ESA 

and the Hungarian Ministry of Agriculture. Analysis of reasons for differences is needed to 

deduce conclusions for the future monitoring system which is the most accurate one. 

Ecosystem Map of Hungary (“NÖSZTÉP” in Hungarian) shows the distribution, extent, and 

frequency of ecosystems on the national level relying on existing thematic databases and 

remote sensing images (Sentinel-1 and 2) (Agrárminisztérium, 2019).  

The difference between maps of Forestry Database, Copernicus forest cover, and 

Ecosystem map was given in ha and % as well for all three study areas and it showed that 

Copernicus maps were smaller with 6.54 % in extension while Ecosystem map is also smaller 

with 10.4 %, when we take mean values of study sites (Table 12).  

The difference was expected since they are all based on different methods and have 

different formats: the Forestry Database units are polygons, while Copernicus and Ecosystem 

maps are rasters with 10x10 and 20x20 spatial resolution (Figure 35). The year of creation also 

differed, since the FD was updated in 2016, the Copernicus in 2018, and the Ecosystem was 

based on data from 2015. Other differences showed up as well on a larger scale, discussed in 

the next chapter. 

5.5. Expansion to other satellite data 

The expansion of possible with both freely available and paid datasets. Landsats, MODIS and 

Sentinel-3 is for free but Planetscope is not, however it offer multisprectral imagery with 

higher resolution. 
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5.5.1. Landsat 

Landsat data can provide longer times series compared to S-2 but in lower spatial resolution. 

For the Landsat-based analysis I used the USGS Landsat 8 Level 2, Collection 2, Tier 1 collection 

in the same way as S-2 except the different bands. For the calculation of NDVI bands B4 and 

B5 were used, for cloud maskingg the QA_PIXEL bands’ 1,2,3,4 and 5 bits, where 0 refers cloud 

free value. The investigated period prolonged compared to S-2 and eight years were surveyed 

from 2013 to 2020. In this period the winter months were also excluded and a 30 days time 

window was applied to flatten the collection with mean values. In addition to the future 

application, the Landsat 9 was launched in 2021 and the data is available since October. 

The Harmonized Landsat and Sentinel dataset (HLS) could be ideal for monitoring, since it 

covers the Earth’s mainland in 2-3 days (USGS, 2022) which is a significant improvement 

compared to either Landsat or Sentinel alone, even if resolution is moderate 30x30 m. 

5.5.2. MODIS 

MODIS data is available since 2000 by Terra, and 2002 by Aqua satellites in moderate 

resolution. The preprocessed long-term datasets are ideal for monitoring since they can be 

used easily. The MOD13Q1 product contains NDVI already and cloud masking as well for 16 

days periods. It was filtered for the vegetation periods from 2000 to 2020, thus it is the longest, 

20-year long time-series, I used in this study. Due to this parameter MODIS has been popular 

among scientists who worked on time-series and forest monitoring systems. Kern et al. (2017) 

used for finding extreme events in vegetation condition in long term, while we used it for 

determining forest damage extent after a certain event in Hungary (Molnár et al., 2019a), and 

built a whole monitoring system on it (Somogyi et al., 2018) to have constantly updated 

geodatabase about Hungary. While in the USA (USDA 2020), or in Germany (Buras et al., 2020) 

other similar systems operate using MODIS data. But since its lifespan ended in 2022 it shall 

be replaced with other satellites like Sentinel-3 or Suomi NPP.  

5.5.3. Sentinel-3  

The Sentinel-3 A and B twin satellites are equipped with five instruments to measure sea-

surface topography, temperature, and colour used for environmental and climate monitoring 

(ESA, 2020d). Sentinel-3A was launched in 2016 and Sentinel-3B in 2018.  For forest 
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monitoring the Ocean and Land Colour Instrument (OLCI) is the most suitable with a 1270 km 

swath, 300x300 m spatial resolution in 21 bands with 1-2 days revisit time. In the new version 

of the TEMRE, this dataset is used to replace the former the MODIS. 

5.6. GEE limitations 

The GEE is a powerful geospatial tool to process and visualize data, with multpy functions and 

development possibilities, it has no unlimited capacities. In order to serve more clients at the 

same time the GEE has certain computing limitations and exceeding them results in errors. It 

is possible to avoid them with higher programming skills to a certain extent, but on nationwide 

level, the problems occur in high numbers and some functions and datasets cannot be applied 

to larger areas. The most frequent problems during my PhD work were the following ones: 

• Geometry has too many edges: only 2 000000 edges are allowed thus large polygons 

need to be simplified with edge reduction before uploading them to GEE. GIS programs 

like QGIS or ArcGIS are capable of that. However, from a forestry point of view, the 

reduction results in less accurate forest masks for instance. 

• Geometry has too many vertices: above the limit of 1 000000. Simplification and 

dissolution are needed before uploading. 

• Too many pixels in the region: only 1 0000000 is allowed which can be exceeded by 

setting the maxPixels or the scale to a higher value or setting bestEffort to true which 

recomputes the scale of not to exceed the maxPixels limit. 

• Computation time out: quota restrictions exist to ensure the availability of computing 

resources for the entire Earth Engine community and when too many rasters are 

loaded simultaneously or there are too many mathematical operations with several 

layers, the GEE stops the calculation since the algorithm can't be scaled. It can be 

solved by loading only a few maps at the same time and trying to use combined 

functions for computing such as .normalizedDifference for NDVI instead of calculation 

with separate subtraction, summation, and division of bands. 

• User memory limit exceeded: when too long time series or large arrays are used, or 

unnecessary data conversion takes place the computation does not fit the given 

memory limits. This error can be solved by setting a narrower time window to reduce 

memory usage. 

https://gis.stackexchange.com/questions/378506/geometry-has-too-many-edges-error-on-gee
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• Downloading data: too large datasets to be exported result in either computation time 

out or user memory limit exceeding. It can be solved with the above-mentioned 

methods or with further reducer application on the dataset before exporting. 

Besides certain computation errors there were other issues with the cloud 

filtering, the validation of RS data, the time shift, the practical use of the novel system 

and the data security. These are all discussed here with methods to be tested in the 

future. 

• Cloud filtering: a perfect could filtering method does not exist for Sentinel-2. The high 

cloud cover caused gaps in the dataset, especially in spring and early summer. In the 

vegetation period April, May, and June are particularly important marking the start of 

the growing season with increasing photosynthetic activity. This phenological stage 

has valuable health information about forests and the forest type classification is more 

accurate if these months are included, according to Persson et al. (2018) and Axelsson 

et al. (2021). In addition, more advanced cloud filtering algorithms could be applied to 

datasets like Cloud Probability, s2cloudless, or Fmask (Tarrio et al., 2020). Barton 

(2021) developed a specified forest cloud filtering where sen2core had problems. 

• Validation: Due to the different scales of RS and ground-based datasets the validation 

could be problematical. The large sampling area (several hectares and/or whole forest 

compartments) is certainly a disadvantage of the ground-based dataset when 

compared to fine-resolution satellite pixels (10x10 m), which causes uneven data 

distribution. When we compared scattered pixels to whole forest compartments, it 

often caused a matching problem. To solve it, pixels were transformed into polygons, 

namely zonal statistics were calculated from the pixels for the compartments based on 

mean or median values. This method helped to compare the datasets having the same 

scale but reduced the diversity of pixel values within the compartment and made it 

harder to detect changes in the forest health state.  

• Timeshift: The date of the ground-based registration is another problem. The field data 

is collected throughout the year but published next year after summarizing the whole 

year’s dataset thus time shift is always present. Also, the exact date of satellite image 

acquisition does not match the ground survey and the overlap will not be visible on 

the maps dedicated to showing the same forest damage in the same period. RS could 

be a useful tool to survey the damaged area before going out into the field since it 
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could show the damage before it’s visible on the ground, however, drought effects can 

appear in the coming year rather than the given year; thus, it is not always completely 

evident which datasets should be compared to each other.  

• Practical use: the compartment-based comparison method would be suitable for 

practical use since the rescaled VI maps and forest protection reports of the Forestry 

Database are similar in scale and can be used by forest managers. The RS could reduce 

the workload both of researchers and practical foresters since RS offers an alternative 

to repetitive fieldwork triggered by each new survey or research. 

• Uploading protected data: if the dataset is transformed before uploading into GEE the 

decompilation will not be possible, thus it’s a way to keep it safe. For instance, forest 

polygons were simplified, and the attributes were reduced to the necessary ID columns 

or transformed into rasters with the reclassification of vector attribute values of forest 

damage. 

• Public version: making the system public is not recently possible in Google Apps 

without sharing the code since the web browser's network traffic can be accessed. This 

is due to Google’s policy of sharing valuable research results and making methods 

easily reproducible, but it is certainly a drawback when one cope with private data and 

is not allowed to share. 

5.7. Expansion with biotic damage 

Due to the limited amount of time and capacity, in this Thesis I focused on surveying abiotic 

forest damage but since biotic ones have more and more significant importance nowadays it 

would be desirable to try the GEE-based method on these damage types as well.  

Several studies were made identifying bark beetle damage with different datasets. I 

surveyed the Sopron mountains in Western Hungary, which was affected by bark beetle since 

2017, which was the latest gradation. The Sentinel-2 satellite images were created using 

Mosaic Hub, Anaconda, and Jupyter Notebook web-based computing environments for the 

period 2017-2020 (Molnár & Király, 2022a). Biotic forest damage was detected by vegetation 

(NDVI) and moisture (Moisture Stress Index - MSI, NDWI) indices derived from S-2 images. The 

spatial and temporal change of damage was observed in the image series, resulting in 

information about the level of degradation and regeneration. 84 affected forest 
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compartments were surveyed, which showed degradation in the index mean values (MSI = - 

0.14, NDWI = - 0.2, NDVI= - 0.19) almost in every studied forest compartment when years 

were compared to each other. The remote sensing-based survey was validated with the forest 

database of the Hungarian National Land Centre and the forest protection damage reports of 

the Hungarian National Forest Damage Registration System. 

Another possible application of this RS-based method could be the expansion of the survey 

for the whole of Hungary to check the damage caused by a relatively new invasive species, the 

oak lace bug. According to Paulin et al. (2020), this new biotic agent is present all around the 

country posing multiple threats to oak ecosystems, which gives one-third of Hungarian forests. 

The problem is even more severe in southern Hungary and in Croatia for example and RS was 

successfully applied to investigate the impacts in both countries by Kern et al. (2021). 

Since the drought has been an increasing problem both worldwide and in Hungary and the 

invasion of insect species is often triggered by drought, it would be interesting to apply 

climatic and meteorological datasets (precipitation, temperature, soil moisture) in the studies, 

which could be compared to VI values to show correspondence between them, as Birinyi et 

al. (2021) suggested with corn yield comparison to NDVI and EVI in Hungary with GEE.  

5.8. Expansion with machine learning 

Aiming to improve research efficiency, I wish to involve more ML methods into my future 

works. Since in this Thesis, I solely applied Random Forest, with satisfying results but yet it can 

be improved, and I see two ways of achieving it. 

The first would be a more advanced way of determining Z NDVI damage thresholds by ML. 

Instead of the recent, empirical threshold, dynamic threshold based on the VI histogram of 

each year could be used. Based on the histogram, the VI values could be divided into quantiles 

or percentiles, standing for the intensity of VI change. 

The second way would concern testing other ML methods, for instance, pixel-based 

algorithms like Minimum Distance Estimation, Support-Vector Machine, Gradient Boost 

Regression, Naïve Bayes, or object-based methods like K-means, X-means, Cobweb or 

Learning Vector Quantization, which is a case of the neural network and used in the latest and 

highest end developed technique, Deep Learning.  
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6. Conclusions 

To conclude my PhD thesis, I briefly report the results in connection with the research goals, 

plans, hypotheses, and questions I stated in the introduction.  

At the beginning of my PhD, the first and second questions and hypothesis were if it is 

possible to monitor forest health in Hungary based on high-resolution satellite images. I 

successfully achieved to have Sentinel-2-based annual composites for all study areas 

(Nagyerdő, Farkas-erdő, Central Bükk) and years (2017-2020). Even the wall-to-wall expansion 

worked, which could be a great asset in future monitoring. 

In the third hypothesis I asked if cloudless annual and monthly satellite image composites 

can be created for the entire vegetation season and with the adequate spatial, temporal and 

cloud filtering methods. I also managed to create nearly cloud-free annual S-2 imagery. The 

monthly temporal resolution was not yet possible to achieve due to the cloud-cover and the 

drawbacks of recent cloud-masking algorithms used in this Thesis.   

Fourthly, I was interested if interannual disturbances in forest health due to biotic and 

abiotic damage can be detected by vegetation and water indices and I tested NDVI, NDVI 

change, Z NDVI, EVI, and NDWI, all derived from annual S-2 composites. All indices were 

suitable showing disturbances in different extent and severity, but Z NDVI showed the most 

differences from the long term mean and thus it was used in comparison of RS and ground-

based maps.  

Fifthly, I was keen to know if it is necessary to develop new methods for reaching 

agreement between RS and ground-based datasets and yes, not only the different existing 

methods had to be combined to achieve the goals, but new codes had to be implemented as 

well for the specific vegetation indices used in the monitoring system. Developing a specific 

computer code system as a base for a novel forest monitoring system was done and several 

VI-s were tested for disturbance detecting. From the several indices the Z NDVI was the most 

suitable for the monitoring goals, thus it was used as base for the RS damage detection and 

accuracy assessment was made based on this dataset. 

My results indicated that the combined dataset of satellite imagery and ground-based data 

provided suitable input for forest damage monitoring conducted with GEE. The applied 

method successfully identified different types of forest damage (abiotic, biotic and 
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anthropogenic) on Z NDVI maps in the surveyed period with 78% Total Accuracy. This mean 

accuracy was based on all years between 2017 and 2020 and all study areas and can be 

considered satisfactory. However, the study sites and years differed from each other. The 

accuracy was excellent in the case of Nagyerdő (94%), hight in Farkas-erdő (80%) and 

moderate in Central Bükk (61%).  

The satisfactory and moderate Total Accuracy results of Farkas-erdő and Central Bükk have 

to be improved to reach the state-of-the-art level. Further developments are also needed to 

introduce this method in a wall-to-wall, operational system, namely, to improve the forest 

masking, cloud filtering, the density, the accuracy of damage threshold determination, 

eventually to use Machine Learning for damage detection. 

The seasonality in vegetation indices was studied on time series as well. Cloud masking 

already helped in that issue, but new datasets should be tested. The great advantage of GEE 

is flexibility and resilience: with a working method, a new study site can be surveyed easily 

and rapidly if the new area is also covered by the same RS dataset. 

In the sixth hypothesis about if Copernicus forest maps can support my monitoring system 

by providing novel, satellite-based forest masks for both the study areas and the whole of 

Hungary and it turned out that these masks can be used in the GEE system and could improve 

monitoring speed since they are already built in, but the accuracy differed with the 

designation of forested areas in 1-20% compared to reference maps. However, it has great 

importance since RS-based maps can be updated more frequently than tradition ones plus on 

European level the monitoring would be easier on a map which is available for all countries. 

But even on study site level the masks could differ significantly, and the possible reasons are 

explained below. 

Better quality forest mask is needed and can be created by excluding areas with a regularly 

updated clearcut class and only focusing on actual forest-covered compartments. Cloud 

filtering is also essential part of and forest monitoring and even a small amount of remaining 

cloud cover can cause problems but to achieve completely cloudless image is very challenging. 

A cloud filtering (cloudy pixel percentage and QA 60 bitmask) method was used in this PhD 

Thesis, and it provided high-quality mosaics for each study area and period. Nevertheless, 

cloudy springs and summers caused gaps in the dataset due to the high cloud cover. To solve 
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this problem, novel cloud-filtering algorithms like Fmask or s2cloudless can be applied to S-2 

images, and with the adequate cloudless images created by the novel cloud filtering, 

eventually it will be possible to increase monitoring frequency and analyse forest health on a 

weekly or at maximum monthly basis instead of annual composites. 

The wall-to-wall expansion worked for maps made for Hungary, some functions, like 

displaying data on a graph, did not work at that scale. Also, native S-2 resolution had to be 

rescaled from 10x10 m to 100x100 m to be able to display data on this scale. 

Regarding the seventh hypothesis, I hypothesized that the ground-based reports can be 

used for validation of RS data, and these reports were probed to be useful indeed, however, 

the accuracy can be improved. Problems occurred due to the varied reasons. 

I tested different parameters which could be compared to pixels of satellite images but 

nor the damage frequency, intensity and ratio gave very accurate results of all study areas and 

all years. The frequency was proved to be the best marking the number of damage trees in 

the compartment; however, it doesn’t concern how badly they were damaged. While the 

intensity is the opposite of that, which is less accurate on spatial based analysis. This was the 

reason why I created the damage ratio based on damaged area and total area of the 

compartment, but despite the idea it did not work as well as I expected but was still better 

than the intensity. Yet it would be needed to register the location of the damage core with 

GPS coordinates in the Hungarian National Forest Damage Registration System which would 

be a great help to match ground-based survey with RS. The time matching is also problematic 

since reports are delivered sometimes a year after the actual damage while in theory S-2 could 

provide new data in every 2-5 days, from what the composites are made.  

The question of reliability emerged, if the system is robust enough for forest authorities 

and managers to forest damage monitoring or not. The answer is that, before we recommend 

it for operational use, the system has to be tested in several areas, but regarding the results 

of the analysed three study areas and four years it can be said that 94, 80 and 61 % Total 

Accuracy values are promising enough to put more effort into the development. 

The lack of workforce in the forestry sector Since nowadays is a serious problem, thus it is 

very important to support fieldwork with RS to enhance effectiveness. The RS could reduce 

the workload of the forestry labour force as well and provide forest data quicker and more 



10.13147/SOE.2023.016

 

106 
 

accurately than the traditional methods used in fieldwork. The usage of field reports and 

forestry data from national forest damage databases could enhance the possibility of 

expanding the method into other regions of Hungary, since the datasets are available for the 

entire country in a uniform way, and no extra field measurements would be needed. That is 

one of the reasons why this database was used in this PhD instead of own field measurements. 

Yet before reaching the operational level, the suitability of the proposed monitoring 

approach should be tested on a larger scale as well. The expansion of this GEE-based 

monitoring method into a wall-to-wall monitoring system is possible, for Hungary or even 

Europe. The similar conditions and similar forest damage types in Europe could be monitored 

in a uniform way regarding data collection, processing, analysis, and visualization which would 

be a novel solution instead of national approaches. Cloud computing and ML both have great 

relevance in this plan, with them the entire monitoring process can be made online. It would 

be ideal to compute the dynamic damage threshold for forest damage by ML algorithms in 

GEE. To enhance accuracy the thresholds of damage could be determined by ML instead of 

manual setting. ML could detect trends in anomalies of time series which sit outside these 

patterns and identify the thresholds automatically. 

7. Thesis 

7.1. Forest health state was successfully monitored based on high resolution, annual 

Sentinel-2 satellite image series from 2017 until 2020 in the selected study areas 

(Nagyerdő, Farkas-erdő, Central Bükk) in Hungary, using Google Earth Engine online, 

cloud computing system. The study sites differed in location (east, west, and north), 

terrain (plain, hilly, mountainous), size (1092, 5500, 52000 ha), and species composition 

(oak, hornbeam, beech – dominated forests) to represent different forest site types. 

7.2. Forest damage was shown on vegetation and water index maps (NDVI, Z NDVI, NDWI, 

EVI) and charts derived from cloudless, Sentinel-2 composites of the entire vegetation 

season (April - October). Both biotic (insect) and abiotic (wind, snow, ice, frost, drought) 

damage resulted in negative changes in the index values. In the case of Z NDVI, the 

threshold of -0.5 was chosen for forest damage, where all equal or lower values refer to 

negative change, while the ground-based damage frequency was set at least 30%.  
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7.3. Remotely sensed forest damage was validated with systematically collected ground-

surveyed forest damage reports based on the damaged area, intensity, frequency, and 

sanitary logging data. The remotely sensed dataset was compared to damage frequency, 

intensity, and ratio values. The ratio was a novel field surveyed data type which was 

based on the damaged and total area of the compartments. In that would be desired to 

have the location of damage registered with GPS coordinates in the reports. All study 

sites' mean total accuracy values showed that frequency has the highest accuracy with 

78%, followed by the ratio at 46% and intensity at 30%. Regarding each study site, 

Nagyerdő showed 94% total accuracy in the surveyed four years, while Farkas-erdő did 

80% and Central Bükk 61%. 

7.4. The Google Earth Engine-based method for forest health assessment is capable of 

running a nationwide monitoring system. The Sentinel-2-based method was successfully 

tested for Hungary on the country level using Copernicus forest cover maps and Sentinel-

based Z NDVI maps. The satellite-based forest cover maps were generally more up to 

date but larger in extension with 1-20 % in the mean for the study areas and country-

wide scale compared to the land-use-based Copernicus maps of the National Forest 

Database or National Ecosystem map. However, they are all based on different methods, 

have different formats (vector vs raster, 10x10 vs 20x20 m resolution) and made in 

different years. Definition of forest and forest masking technique is not the same either. 

7.5. Machine Learning can be applied for forest species classification in the GEE system. 

Species composition can be mapped on pixel level using Random Forest method on 

Sentinel-2 composites and validated by ground-based datasets. In the case of Nagyerdő 

82% Total Accuracy was achieved for the four dominant tree species (pedunculate oak, 

red oak, Scots pine and Black locust). 

7.6. The novel approach could be integrated into the operating TEMRE system or the Forestry 

Subsystem of the Hungarian Earth Observation Information System since both utilize S-

2 imagery.  
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