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Abstract / Kivonat

The dissertation demonstrates automated image classification techniques applied to recent
high resolution (<5 m/pixel) aerial imagery for vegetation classification purposes. It was
proved based on a riparian wetland site for different years that the application of a combined
spectral-textural feature set in the supervised class description based fuzzy algorithm signif-
icantly enhances the classification performance compared to the use of spectral or textural
features only. The best classification results gave 87-88% overall accuracies with a simple and
an extended classification scheme, defined after botanical and silvicultural reference data.
Furthermore, classification algorithm transfer was considered for automated applications in
space and time. It was proved that the automated mapping of poplar stands is feasible by
transferred decision tree classification approach, under those conditions that the samples
selected in the training site only include the hybrid poplar forest stand type. By systematic
Jeffries-Matusita class separability analysis, the GLCM (Grey Level Co-occurrence Matrix)
standard deviation (STDEV) was found as a significant and stable textural parameter for
the analysis of vegetation pattern differences in colour-infrared aerial images. For the most
recent CIR imagery it was proved that a decision tree classifier with GLCM STDEV and
vegetation index applied to the separation of high and low vegetation, is automatically
transferable to former CIR images. Based on the supervised classification of NIR-R-G im-
ages GLCM STDEV was found as a single descriptor without the use of vegetation index
for the detection of high and low vegetation. Decision tree transferability was proved for
further classification automation in space and time, with the above mentioned generalized
classification scheme applied to the separation of forested and non-forested wetlands. These
classification methods help in the effective processing of large aerial image archives and their
application is proposed for silvicultural and botanical inventories.



A disszertáció témája nagy felbontású (<5 m/pixel) légifelvételekre alkalmazott automati-
kus képosztályozási eljárások kidolgozása vegetációtérképezés céljából. A szerző hullámtéri
tesztterület különböző időpontból származó felvételeire bebizonyította, hogy az osztályjel-
lemzésen alapuló (class description based) fuzzy algoritmus mint tanítóterületekkel végzett
objektum alapú osztályozás akkor adja a legjobb vegetációosztályozási eredményt, ha az
osztályozó bemeneti paraméterei spektrális és texturális jellemzőket is tartalmaznak, ellen-
tétben a kizárólag spektrális vagy texturális paraméterek alkalmazásával. A legjobb osz-
tályozási eredmények 87-88%-os átlagos megbízhatóságot eredményeztek egy botanikai és
erdészeti adatokon alapuló egyszerű és kibővített osztályozási rendszerrel. A szerző vizsgálta
az osztályozási algoritmus térbeli és időbeli átvitelét. Bebizonyította, hogy a nyáras osztály
automatikusan térképezhető a döntési fa képosztályozó átvitelével azon feltételek mellett,
hogy a tanítóképen kiválasztott minták első faállományának típusa kizárólag nemes nyáras
lehet. A szerző szisztematikus Jeffries-Matusita elválaszthatósági elemzés alkalmazásával
kimutatta, hogy a GLCM (Grey Level Co-occurrence Matrix) szórás (standard deviation,
STDEV) jellemzője szignifikáns és stabil paraméter a vegetációs mintázatok változásának
elemzésére infraszínes légifelvételeken. Az elérhető legújabb CIR felvételekre létezik olyan
döntési fa képosztályozó algoritmus GLCM STDEV és vegetációs index felhasználásával
alacsony és magas vegetáció elkülönítésére, mely a mintaképen való tesztelést követően au-
tomatikusan alkalmazható korábbi infraszínes légifotókra. NIR-R-G spektrális felbontású
felvétel tanítóterületekkel való osztályozása alapján a szerző bebizonyította a GLCM STDEV
paraméter kizárólagos alkalmazhatóságát a vegetációs index nélkül, alacsony és magas vege-
táció szétválasztására. Az osztályozás további automatizálására vonatkozóan bizonyításra
került, hogy adott tesztképre kidolgozott döntési fa képosztályozó térben és időben egyaránt
átvihető, a fent említett generalizált osztályozási rendszerrel, erdős és nem erdős hullámtér
automatikus elkülönítésére. Ezen módszerek alapján nagy méretű légifelvétel-adatbázisok
hatékony és gyors feldolgozása lehetővé válik, melynek botanikai és erdészeti alkalmazása
nagy jelentőséggel bír.
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Chapter 1

Introduction

1.1 General introduction

Over the past 50 years, the rapid and extensive change of ecosystems induced a significant

decrease in the biological diversity (MEA, 2005) and in this regard the sixth great extinction

wave is already occurring in the Earth’s biota (Mendenhall et al., 2012). Therefore, in the

European Union the “EU 2020 biodiversity strategy” has been developed related to the Eu-

ropean Habitats and Birds Directive, in order to halt the loss of biodiversity and ecosystem

services in the EU by 2020 (Europian Commission, 2011). Besides a policy framework, an

appropriate technology is needed for the monitoring of ecosystems, where remote sensing

methods are representing objective and time-effective techniques for the continuous obser-

vation of ecosystems from above (Lang et al., 2013). Beyond satellite imagery, archive aerial

photography provides the basis for the historical characterization of the variability within

ecosystems as well as for strategy development related to the management of ecological

integrity (Landres et al., 1999).

Wetland ecosystems are among the most productive ecosystems in the world, but they have

reached a vulnerable status, wherefore a conservation and sustainable development strategy

has been formulated in the Ramsar Convention on Wetlands (1971) (Maltby and Barker,

2009). The main drivers of the degradation and loss of inland wetlands are infrastructure

development (such as dams, dikes and levees), land conversion, water withdrawals, pollution,

overharvesting and the introduction of invasive alien species. Furthermore, it has been

1



Chapter 1. Introduction 2

projected, that global climate change and nutrient loading have become an important factor

for the next 50 years (MEA, 2005).

Detailed monitoring of riparian floodplains is vital for an effective restoration management,

which requires large scale inventory, often carried out by traditional systematic field surveys.

However, traditional field observation cannot provide a synoptic and systematic overview

about recent changes because of its limitations in space and time. Under extreme flooding

conditions it could be often impossible to carry out field investigations in a certain time

frame. Beyond that, due to high personal costs and possible inconsistencies in the experi-

ences of different surveyors, the application of remotely sensed images with high geometric

resolution came in the focus of interest. Aerial photo archives contain images from earlier

periods than the first satellite images, providing a challenging opportunity for analysing

vegetation habitat changes over several decades.

Visual interpretation of aerial photography has been extensively applied for decades for fine-

scale vegetation habitat mapping and forest inventories (Morgan et al., 2010). Since an ever

increasing amount of remote sensing data is being produced nowadays in a broad range of

spatial, spectral, radiometric and temporal resolutions, automated information extraction

methods came into the focus of interest, which can also compete with the subjective na-

ture of human interpretation. With the increasing computation power in the recent years,

automated approaches have gone through a rapid development and can provide objective

analysis methods for larger areas.

In the analysis of high spatial resolution (under 5 m/pixel) imagery traditional pixel-based

image classification methods often fail due to the wide range of spectral responses related to

certain target classes, e.g., a given forest stand in a complex riparian vegetation environment.

A potential solution is applying object-based (segmentation-based) image analysis (OBIA)

methods, where, instead of individual pixels, image segments as group of pixels become the

focus of the image analysis and the classification.

Beyond the automated analysis of separate image scenes, a harmonized automation in the

spatial and temporal domain is essential when large areas are covered by time series of

several images (e.g., aerial photos).
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1.2 Aims & structure of the research

Based on the above-described problems, the present research is aiming at developing a

vegetation habitat mapping method based on high spatial resolution aerial imagery, using

automated digital image analysis techniques.

In the first step an automated classification method is to be found for an appropriate sepa-

ration of vegetation habitat classes, based on a selected test site in the Szigetköz floodplain,

using aerial images from the recent years.

The second step is to extend the vegetation habitat classification method developed for one

image to other areas in the same riparian wetland.

In the third step an appropriate analysis and classification method is sought for the detection

of similar vegetation habitats in distinct years, concentrating on a selected test site.

The fourth step is related to the spatio-temporal transferability of the classification, where it

is aimed at finding a universal classification algorithm to automatically classify forested and

non-forested wetlands based on a principal training site (image scene), where the algorithm

is applicable to aerial images scenes covering the same wetland and having the same spatial

resolution, but potentially coming from different times.

In the main chapters of the dissertation firstly wetland and vegetation mapping is described

briefly, followed by fine-scale riparian vegetation mapping techniques using remote sensing

(Chapter 2). Chapter 3 addresses the study area and the data used in the analysis. Chapter 4

describes the applied methods in detail. The applications of the methods, their further

development and the scientific findings are demonstrated in Chapter 5 and Chapter 6. The

closing chapters are Chapter 7 with the summary, Chapter 8 with conclusions and future

prospects and in the end scientific results (theses) are presented (Chapter 9).



Chapter 2

Riparian vegetation mapping based

on remote sensing: a review

2.1 Wetlands and vegetation mapping

Wetlands have been listed among the world’s most productive ecosystems (Maltby and

Barker, 2009). Out of them floodplain environments in their natural state are of particular

importance due to their high biodiversity providing critical habitats for many plants and

animals and further on being a natural element in the maintenance of water quality (Ander-

sen, 2004). During the last decades wetlands have become the most vulnerable ecosystems.

An intergovernmental treaty called Ramsar Convention on Wetlands (1971) is aiming at

the wise use of wetlands by improving their management and developing a comprehensive

information base on the status and trends of wetlands, their values and the major drivers

of adverse change (Maltby and Barker, 2009).

Since vegetation in general provides a base for all living beings and plays an essential role in

affecting global climate change, with an influence on terrestrial CO2 by the net ecosystem

exchange of CO2 between the atmosphere and forest ecosystems (Xiao et al., 2004), its classi-

fication and mapping has been an important task for managing natural resources (Xie et al.,

2008). Analysing vegetation structure is important for the characterization of wildlife habi-

tat quality, where animal species both within and among habitats are partitioned according

to the vegetation composition (Wood et al., 2012). Changes in vegetation are evidence of

4
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environmental impacts which are important for the functioning of the ecosystem and for

biodiversity maintenance (Ihse, 2007).

Vegetation and land cover maps for a certain reference time or over a continuous period at

different scales are essential instruments for the global climate modelling and for ecological

and biodiversity studies (Millington and Alexander, 2000) and provide valuable information

for understanding natural and man-made environments (Xie et al., 2008). Obtaining current

states of vegetation is essential for the planning of vegetation (habitat) protection and

restoration. Millington and Alexander (2000) summarized the need for vegetation maps in

two crucial points: firstly to communicate a complex set of information about vegetation in

a simplified and spatially referenced form, secondly to provide spatially referenced numerical

data about vegetation that can be used for analyses.

2.2 The remote sensing perspective

Traditional methods for vegetation analysis, like field surveys, map interpretation and an-

cillary data analysis are often not effective enough, since they are time consuming, often

provide information about lagged dates and have high expenses (Xie et al., 2008). Although

ground based field monitoring can provide highly detailed information about the vegetation

cover, it is very time intensive and could be only feasible over small spatial extents (Levick

and Rogers, 2008). Davidson and Finlayson (2007) emphasized the essential role of Earth

observation (remote sensing) techniques adopted by the Ramsar Convention on Wetlands

for the inventory, assessment, monitoring and management of wetland ecosystems at widely

differing spatial scales.

Remote sensing is a promising analysis method where the Earth surface is sensed from

above, without touching or accessing it. Remote sensing can provide the basis for vege-

tation classifications in different ground spatial resolutions from global (e.g., for climate

and biogeochemical models) through regional scale (e.g., for habitat mapping or watershed

modelling) to species level. Spatial scale or resolution, commonly referred to as ‘pixel size’

in digital images, is a key element of remote sensing. At the global and continental scales

the 1-km-spatial resolution has been commonly applied, e.g., based on AVHRR (Advanced

Very High Resolution Radiometer) (Running et al., 1995), SPOT4-VEGETATION (SPOT,

French: Satellite Pour l’Observation de la Terre) or MODIS (Moderate Resolution Imaging
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Spectroradiometer) satellite imagery (Xie et al., 2008). Medium ground spatial resolution

about 30 m/pixel e.g., in case of the Landsat-system, is suitable for regional satellite map-

ping, applied for instance to biodiversity assessment and conservation planning in the study

of Fuller et al. (1998). In the study of Ozesmi and Bauer (2002) remote sensing techniques

are applied for different types of wetlands from global (AVHRR, 1 km/pixel) to medium

scale (SPOT, 20 m/pixel) and concluded that satellite-based remote sensing is especially

appropriate for initial reconnaissance mapping and continued monitoring of wetlands over

large geographical areas. General information on water regime and vegetation productivity

can be well-detected, however, they cannot provide the detailed information available from

high geometric resolution imagery included aerial photography. Several studies (e.g., Yu

et al., 2006; Johansen et al., 2007) emphasized the advantage of using high spatial reso-

lution remote sensing images for the analysis of riparian zones with restoration purposes

due to a decrease in valuable ecological functions (e.g., vegetation structure) provided by

riparian forests to streams (Gergel et al., 2007). This kind of imagery is described in detail

in the next section.

The analysis of remotely sensed imagery brings another perspective to vegetation studies,

by means of being capable of detecting patterns at different spatial scales which may not be

obvious from the ground and this kind of analysis helps in the characterization of ecosystems

in larger spatial extents. Beyond that, a great advantage of remotely sensed data is the

potential for systematic observations at various scales through the extension of possible

data archives from present time to over several decades back (Xie et al., 2008).

2.3 Analysis of high spatial resolution optical imagery

2.3.1 Availability of imagery

Satellite and aerial images in various spatial scales are able to capture the spectral reflectance

of different land cover types in distinct wavelength intervals of the electromagnetic spectrum.

The optical wavelength interval originally means the range between 400 nm (violet) to

2500 nm (shortwave infrared) (Lefsky and Cohen, 2003), however, in the current study

we have been concentrating on the interval between 450 nm and 900 nm including blue,

green, red and near-infrared bands, discussed commonly in multispectral remote sensing

applications.
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Although medium resolution satellite imagery (e.g., Landsat with 30 m/pixel) have been

effective in mapping seasonal characteristics of the vegetation for larger extents since 1972,

their spatial resolution has been too low for the analysis of those riparian units which can

vary in composition and form below that scale (Davis et al., 2002).

In Lefsky and Cohen (2003) analogue aerial photography has been stated as the oldest, most

frequently used and best understood form of remote sensing. For mapping small ecosystems,

fine-scale landscape features and successional pathways aerial imagery has proved to be

effective due to the often present high spatial resolution, radiometric (tonal) detail and

historic availability, dating already from the early 1930s in some cases (Green and Hartley,

2000; Morgan et al., 2010). With higher ground spatial resolutions, often less than 1 m/pixel,

and with slowly declining costs the use of airborne sensors is reasonable for the improvement

of vegetation mapping accuracies (Davis et al., 2002). The spatial scale for airphotos is a

function of camera focal length and aircraft flying altitude and also depends on the film’s

halide crystal grain size, where a moderate resolution photo would have a 1:12000 scale,

equivalent to a spatial resolution of about 0.4 m (Lefsky and Cohen, 2003) and hereby,

provides very high resolution (VHR) imagery, under 1 m/pixel.

For the digitalisation of hard-copy photographs it is suggested to use a pixel size which is

approximately 20% of the output size of the object of interest (Hall, 2003) which is followed

by orthophoto-production with an appropriate rectification process. Considering digital

aerial photographs directly obtained from digital cameras, a single CCD (charge-coupled

device) sensor with mosaic optical filtering and near-infrared airborne camera systems can

produce images at very high spatial resolutions (under 0.25 m/pixel) (Wulder et al., 2004).

Beyond analogue and digital aerial photography, the increasing availability of commercially

operated high spatial resolution (defined as under 5 m/pixel in Johansen et al., 2010a;

Blaschke et al., 2011) multispectral satellite imagery (e.g., IKONOS with ∼3.28 m/pixel

from 1999; QuickBird with ∼2.44 m/pixel from 2001; GeoEye-1 with 1.65 m/pixel from

2008; WorldView-2 with ∼1.84 m/pixel from 2009) vegetation mapping and monitoring can

operationally develop focusing on narrow riparian zones and certain stand parameters such

as height, age and foliage projective cover (Blaschke et al., 2011). It is essential that in

case of satellite-borne high-resolution sensors the collection of data is ensured from a stable

platform, at regular time intervals, with a relatively large footprint size (Wulder et al., 2004).



Chapter 2. Classifying riparian vegetation based on remotely sensed images 8

2.3.2 Applications

Numerous studies analysed high resolution imagery for conservation and restoration plan-

ning issues. In the European Union it often means the monitoring of Natura 2000 territories

as part of an effective assessment of biodiversity. Natura 2000 is a European Directive, which

was designed to ensure the conservation of the most seriously threatened habitats and species

covering almost 20% of the EU territory. In the context of Natura 2000 and nature conser-

vation the so-called SPIN project (“Spatial Indicators for European Nature Conservation”)

emphasized the advantage of applying high resolution stereo camera airborne scanner data

in a German case study for the classification of phytosociological communities (Bock et al.,

2005). In the study of Förster and Kleinschmit (2008) forest types have been delineated at

three different levels (forest habitats, crown combinations, crown types of single-tree species)

based on a QuickBird scene of the Bavarian submontane area, where the forest habitat level

was similar in size to the terrestrially mapped Natura 2000 areas. Langanke et al. (2007)

aimed at assessing the mire conservation status of a raised bog in Austria as a single Natura

2000 site and analysed different types of aerial photographs (black & white, colour infrared

and true colour) dating back to 1953 (regarding the oldest airphoto) with two interpre-

tation techniques: a standard aerial photo-interpretation and a multi-scale object-based

classification, which are described in detail in the next sections. A comprehensive review

on colour infrared (CIR) aerial photography concerning several decades of vegetation map-

ping in Sweden emphasized the significance of CIR aerial imagery as a fundamental tool in

nature conservation and environmental planning (Ihse, 2007). Outside Europe Gergel et al.

(2007) have mapped harvested and intact forests for riparian restoration planning in coastal

British Columbia, Canada at different spatial resolutions and found a significantly better

classification performance using high geometric resolution.

Beyond the general vegetation mapping methods with restoration purposes, the application

of high spatial resolution imagery has been essential for the assessment of forest resources,

concerning forest structure analysis and the measurements of forest biophysical data (e.g.,

LAI, leaf area index, above-ground biomass and NPP, net primary production) (Wulder

et al., 2004). Research studies related to the HR multispectral imagery based estimation

of forest structure listed the forest structural parameters. Franklin et al. (2000) analysed

airborne multispectral video images and airborne spectrographic images (the highest resolu-

tion was 0.3 m) for the classification of pure and mixed-wood forest stands from ecoregions
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in Alberta and New Brunswick, Canada and proved the advantages of using images with

high spatial resolution. The analysis of digitized CIR aerial photographs at 0.5 m/pixel

resolution provided promising results for forest attribute estimation in the study of a bo-

real forest in southern Finland (Tuominen and Pekkarinen, 2005). Hájek (2008) applied

medium-format digital aerial images (resampled to 0.5 m) for the purpose of automated up-

dating of an existing GIS forest management database in southern Moravia, Czech Republic

and highlighted the significance of CIR aerial images as an alternative to traditional aerial

photos and HR satellite data. Concerning the analysis of high resolution satellite imagery,

Wezyk et al. (2004) applied QuickBird imagery for the mapping of forest canopies in south

Poland and presented the potential of classifying the development stage (aging) of the forest

stands. Kim et al. (2009) presented the application of IKONOS images to delineate forest

types (decidious, evergreen, mixed) in North Carolina, US and proved that the incorpora-

tion of textures (discussed later in Chapter 4.3.1) resulted in a classification agreeable with

manually interpreted forest types. In the forest structure study of Kayitakire et al. (2006)

the estimation of coniferous forest variables (age, top height, circumference and basal area)

in eastern Belgium based on 1-m resolution IKONOS-2 imagery gave promising results for

the application in forest planning. For the analysis of similar forest structural parameters

Ozdemir and Karnieli (2011) presented the potential of World-View-2 multispectral imagery

applied to a dryland plantation forest in Israel. Concerning financial issues Hájek (2008)

emphasized, that although the radiometry of the 8-bit/pixel aerial imagery (used in his

study) can hardly compete with the 11-bit IKONOS satellite image data (the geometric

resolution in the multispectral mode is lower there: 3.28 m/pixel) or with a 12-bit/pixel

data from the Digital Mapping Camera (DMC), the cost of analogue images and hereby, the

lower primary investment plays an important role in the management of forestry. Although,

it is not in the scope of this study, the potential of combining HR (aerial/satellite) imagery

with LiDAR (Light Detection and Ranging, also called as laser scanning) data has been

emphasized in various research studies recently, where the identification of individual trees

(tree crowns) and other forest parameters can be significantly improved (Király and Brolly,

2006; Levick and Rogers, 2008; Morgan et al., 2010; Blaschke et al., 2011).

2.3.3 Spectral characterization of images

Looking back to the history of digital image analysis techniques in remote sensing appli-

cations spectral approaches have formed the backbone of multispectral (MS) classification



Chapter 2. Classifying riparian vegetation based on remotely sensed images 10

Figure 2.1: Reflectance curve of vegetation after Jensen (2014).

methods. According to the spectral resolution of the MS imagery, digital numbers (DN)

are captured for different wavelength intervals which are associated with a certain band.

In case of analogue aerial photography the available spectral bandwidths depend on the

spectral sensitivity of the film, where the normal colour film (now not considering the black

& white film with only one panchromatic layer) includes blue (B), green (G) and red (R)

sensitive layers, whereas a colour-infrared film has the near-infrared (NIR) layer besides G

and R (Jensen, 2014). The development of colour-IR film is related to World War II, where

they were applied to detect painted targets that were camouflaged to look like vegetation

(Lillesand et al., 2008). According to the unique spectral characteristics (high reflectances)

of vegetation in the near-infrared region of the spectrum (see in Figure 2.1) the false colour

composite of bands (with NIR,R,G generally) is often applied for visualisation purposes,

emphasizing the vitality of the vegetation in reddish colours (see an aerial image example

with the B-G-NIR band combination representing a part of the latter analysed test site in

Figure 2.2).

2.3.4 Visual image interpretation

After establishing a relationship between the vegetation structural characteristics and the

reflectance (spectral) characteristics of the vegetation, visual image interpretation or image
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classification algorithms are used to identify areas with similar reflectance characteristics for

the same vegetation structural class (Lymburner, 2005). The traditional analysis of aerial

photography has been based on human visual interpretation with manual digitalisation of

thematic units complemented with ground truth data from the field inventory, which results

in a very time- and labour-intensive approach (Mathieu et al., 2007). Visual interpretation

can address a high level of detail, since the human mind is amazingly good at recognizing

and associating complex elements in an image like gray-scale tone, colour, height (depth),

size, shape, texture, pattern, shadow, site, association and arrangement (Jensen, 2014).

Nevertheless, manual interpretation is subjective and vulnerable to inconsistency and error

due to personal experiences, knowledge and expectation of the interpreter for a given site

(Morgan et al., 2010).

2.3.5 Pixel- versus object-based image analysis

Contrary to the visually-based, solely manual interpretation of imagery, automated digital

image analysis techniques provide a time-saving solution and eliminate the influence of the

interpreter’s subjectivity in land cover/land use, more specifically in vegetation delineation.

However, the appropriate use of these methods requires proper experiences in theory and

practice. In general digital image analysis techniques aim at (semi-)automated information

extraction, where the optimal approach depends primarily on the definition of the output

products (e.g., the type of the maps) and is influenced by spatial resolution and inter-pixel

variance (Wulder et al., 2004). In traditional image classification methods the pixels of an

image are examined in order to give particular class labels to them. The application of pixel-

based approaches has been well-accepted at low or moderate spatial resolution (Ozesmi and

Bauer, 2002), whereas at high spatial resolution it could be problematic, since an individual

feature could often be classified in distinct categories because of consisting multiple pixels

with variable spectral reflectance characteristics (Johansen et al., 2010b).

Several remote sensing studies (e.g., Addink et al., 2007; Levick and Rogers, 2008; Kamagata

et al., 2008; Johansen et al., 2010a) showed that due to the heterogeneous nature of the target

vegetation habitats in high spatial resolution, traditional pixel-based digital image classifiers

do not give satisfactory results. Instead of that the analysis of object-based methods came

to the focus of interest.
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During the analysis of high spatial resolution imagery the target features are generally larger

than pixel size (Johansen et al., 2010b), which makes it very much reasonable to analyse the

images based on objects like groups of pixels, instead of analysing the pixels individually.

This special type of analysis method named object-based image analysis (OBIA) - also

called elsewhere as object-oriented image analysis (OOIA) - applies actually the first law of

geography (Tobler, 1970), which says: “Everything is related to everything else, but near

things are more related than distant things”. In that sense certain image pixels situated next

to each other could be merged beforehand and be handled together. With the increasing

amount of data with high spatial resolution and the development of automated digital

image analysis techniques the principle of grouping pixels into meaningful objects before the

classification has become crucial. This need triggered the release of the first commercially

available OBIA software (eCognition, from 2000).

Object-based classifiers can use spectral and spatial patterns together for the image anal-

ysis and thereby involving contextual information (Lillesand et al., 2008) and overcoming

the so-called “salt and pepper effect” (Blaschke, 2010). OBIA consists of image segmenta-

tion (clustering of pixels into homogeneous objects), classification (or labelling objects) and

modelling based on the characteristics of objects (Johansen et al., 2010b). The following

methods, e.g., edge-detection, feature extraction and classification involved in OBIA have

already been used in remote sensing image analysis for decades, whereas the image segmen-

tation itself was not applied extensively in geospatial applications between 1980 and 2000,

although it has not been a new concept coming originally from industrial image processing

(Blaschke et al., 2011). Segmentation approaches currently applied in the present research

are discussed in Chapter 4.1, for a more detailed review on the available segmentation meth-

ods applied in the eCognition object-based software environment the reader is referred to

Dezső et al. (2012).

Due to the capability of building a logical hierarchical structure between different scales of

image objects (Benz et al., 2004), OBIA has a high potential in multiscale landscape analysis,

where semantically significant regions are found at different spatial scales (Burnett and

Blaschke, 2003). The characteristics of meaningful objects can be assessed through spatial,

spectral and temporal scales to generate new spatial information in GIS-ready formats

representing its compatibility with vector GIS-software (Johansen et al., 2010b).

OBIA is becoming a standard image analysis approach for the analysis and extraction of
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GIS-ready spatial information from VHR/HR imagery and its significance has been revealed

through biennial conferences (GEOBIA 2006, 2008, 2010, 2012, 2014), the establishment of

specific teaching activities in academia, special journal issues and beyond that, private and

government agencies adopted OBIA-technique as an integral part of GI Science and spatial

information generation (Johansen et al., 2010b).

The comparison of pixel- and object-based analysis of vegetation emphasizing the improve-

ment of accuracies for the OBIA-method has been presented in various research studies

applied to HR imagery (Yu et al., 2006; Yan et al., 2006; Addink et al., 2007; Levick and

Rogers, 2008; Kamagata et al., 2008; Johansen et al., 2010a). For a general visual com-

parison of pixel-based and object-based classification results an example is presented in

Figure 2.2, based on an aerial photo from the Szigetköz floodplain, which was latter used in

the present research. Both types of supervised classifications (maximum likelihood for the

pixel-based and class description based fuzzy algorithm for the object-based method, see

later in Chapter 4.5) were based on the original bands complemented with the bands for

the first principal component and for the vegetation index, after the selection of the same

training samples.

Yu et al. (2006) presented improved vegetation classification results in Northern California

for the object-based method based on the imagery of Digital Airborne Imaging System (a

12-bit multispectral imaging sensor system) with 1-m spatial resolution in comparison to the

pixel-based analysis, overcoming the problem of salt-and-pepper effects often found in the

traditional pixel-based approaches. In the study of Levick and Rogers (2008) classification

accuracy improvements by OBIA have been presented for the analysis of woody vegetation in

a heterogeneous savanna system in South Africa based on black & white aerial photographs.

Johansen et al. (2010a) highlighted the advantage of geo-object-based classification in the

analysis of temporal changes concerning riparian land-cover classes based on QuickBird

images (under 3 m/pixel) in Central Queensland, Australia. Nevertheless, Blaschke et al.

(2011) have stated that an optimal use of object-based image classification and mapping

for vegetation-related analysis is still under consideration regarding consistency and time-

efficiency. Besides that, concerning the general concept of vegetation mapping Xie et al.

(2008) emphasized that the search for improved image classification algorithms presents

an actual research field in the remote sensing applications because of the lack of those

classification methods which could be universally applicable.
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Figure 2.2: Comparison of pixel- and object-based classification approaches based on the
latter applied aerial image scene of the Dunaremete test site, from 2008, with a spatial

resolution of 1.25 m/pixel.



Chapter 3

Materials

3.1 Study area

The present study is focusing on a Hungarian Danubian floodplain ecosystem: the Szigetköz

wetland which is located in Northwest Hungary, in the interfluve of the Danube and Mosoni

Danube rivers (Figure 3.1). This floodplain together with the Slovakian Csallóköz is the most

extended riparian wetland in the Upper-Danube region characterized by high biodiversity

(Illés and Szabados, 2008; Smith et al., 2000). The Szigetköz covers an area of approximately

375 km2, its length is about 50 km with an average width of 7 km, however, the regularly

inundated area is much smaller. A part of that with around 9682 ha became landscape

protected area in 1987 belonging to the Directorate of Fertő-Hanság National Park and

nowadays including Natura 2000 SCI (sites of community interest), SPA (special protected

area) and IBA (important bird areas)(Szabó, 2005).

In the 19th century significant environmental changes occurred due to the regularization of

rivers, which meant that at the end of the century most of the forests on the protected side

of the dams were felled and replaced by arable land, hay meadows and pastures (Hahn et al.,

2011). In 1992 further changes have happened in the region with severe impact due to the

Danube-diversion, conveying approximately 80% of the discharge into the 29 km long bypass

canal of the Gabčikovo Hydropower Plant in Slovakia, between Dunacsúny and Szap (Ijjas

et al., 2010). The changed flow and sediment regime has significantly affected the unique

diverse pattern of habitat types, which have been altered from aquatic or aquatic-related

forms to more terrestrial species (Ijjas et al., 2010). Dried out river branches with a general

15
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decrease in ground water level characterized the changed environment in the Szigetköz,

however, the degree of ground water level change have been influenced by the location and

the actual amount of water in the Danube (Hahn et al., 2011).

Water was one of the main landscape-forming factors in the Szigetköz by playing a key

role in building and maintaining a highly diverse terrain. Most of the continuously carried

plant propagules from the Alps established and colonized the slow water tributaries of the

Szigetköz. The limitation of the dispersal of propagules by water negatively influences the

share of montane species in the flora. Contrary to the general drying of the environment

nowadays, regular flooding not only provided favourable water supply, but brought exter-

nal nutrients into the soil and prevented intolerant terrestrial species establishing on the

floodplain (Hahn et al., 2011).

3.1.1 Effects of hydrological changes on the vegetation

The unique value of vegetation in the region refers to the richness of species compositions,

where montane and lowland species often grow next to each other. Before the Danube-

diversion, 1013 vascular plant species were known to occur in the Szigetköz, which comprises

46% of the total vascular flora of Hungary (Hahn et al., 2011). As it has been mentioned

before, areas beyond flood protection dikes are covered mostly by arable land, while forests

and meadows are present in the inundation region. Native forests appear particularly on

small islands. On the lower wetland sites patches of the original reed, marsh or tall sedge

vegetation are preserved, which react to the water regime modifications much faster than

forests, due to their shallower rooting depths. Forests in the Szigetköz have nationwide

significance and especially high natural value in the field of nature conservation concerning

the problem of alien species spread in softwood gallery forests (Hahn et al., 2011).

The state of naturalness varies at the different parts of the Szigetköz, ranging from com-

pletely anthropogenic agricultural fields to natural plant communities worth of special pro-

tection (Simon et al., 1993). However, due to the higher proportion of alien species in the

softwood (willow-poplar) gallery forests (Figure 3.2) the degree of naturalness is lower here

than in the hardwood forests (oak-elm-ash). Softwood gallery forests are rich in soil nutri-

ents and receiving floods frequently which provide better habitat for nutrient demanding

invasive species. Nevertheless, the naturalness of species composition for almost each layer

is higher in the Szigetköz than elsewhere in the country due to the lower proportion of alien
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Figure 3.1: Map of the Szigetköz Danubian floodplain. Subset from the map of Győr-
Moson-Sopron (Hungary), by Imre Bába (Paulus Mapdesign Office).

species, higher amount of natural accompanying species and the lower predominance of dis-

turbance tolerant species. By the abundance of old trees and the amount of dead wood the

value of naturalness is greatly improved as well. In addition to that softwood gallery forests

are favoured nesting sites for large-bodied birds (Hahn et al., 2011).

After the Danube-alteration, a water recharging system provides the water in the Old-

Danube channel and side arms, which is artificially regulated. The Danube diversion effected

the various forest communities differently, whereby the most severe influences revealed on

the low floodplain, where the sharp drop in the gradient in the depth of groundwater (Vek-

erdy and Meijerink, 1998) had a serious impact on forests near to the main Danube riverbed.
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Figure 3.2: Willow (on the left) and hybrid poplar forests (on the right-hand side) in the
Szigetköz, near to Gombócos. The photo has been taken on the field work (06.11.2010).

Despite increasing water levels in the tributaries due to the bottom dike, with the current

water recharge system it is not possible to simulate floods. Related to the missing inunda-

tions vegetation undergoes significant changes and hereby loses its special character (Hahn

et al., 2011).

3.1.2 Botanical mapping

History of botanical surveying

The report of Zólyomi (1937) described that the phytocoenological survey of forest com-

munities started in the late 1920s and provided detailed descriptions of willow woods, oak

hardwood gallery forests, relict oak-hornbeam woods and swamp alder woods, where the for-

est stands were considered as remnants of former extensive natural woodlands. Regarding

the proportion of forests to fields it was 60 to 40 in the 1920s (where hybrid poplar planta-

tions accounted for 12.5% of forest area), nevertheless, it went through a remarkable change

with the extension of agricultural land until the 1980s, which means that the mentioned

ratio became 20 to 80. The share of hybrid poplar plantations within forests increased as

well to 81% by that time, whilst seminatural forests covered 19% of the area only (Hahn

et al., 2011).
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Recent surveying methods

In 1997 a new national project, the National Biodiversity Monitoring System (Hu. NBmR:

Nemzeti Biodiverzitás-monitorozó Rendszer) has been started in its test phase defining 124

squares of 5×5 km2 (covering around 3.2% of Hungary), where the habitats are classified

after the so-called Á-NÉR classification system at the scale of 1:25 000 (Török et al., 2007).

The Á-NÉR (Hu. Általános Nemzeti Élőhelyosztályozási Rendszer) Hungarian habitat map-

ping method concentrates on the joint observation of physiognomy, species composition,

vegetation dynamics and habitat quality based on naturalness in its non-hierarchical, two-

dimensional (including vegetation type and habitat quality) categorization (Bölöni et al.,

2008). The scale (1:25 000) and the number of categories (116) were both exceeded the

CORINE Land Cover classification system (with the scale of 1:100 000 and 44 categories in

total: http://www.eea.europa.eu/publications/COR0-landcover) and were less than

the traditional vegetation mapping system (current phytocoenology applies the scale of

1:10 000 - 1:5 000 and maps beyond 400 classes)(Fekete et al., 1997). This type of biodi-

versity monitoring aims at the characterization of a concrete site, also in comparison with

other sites and analysing changes for the certain test area.

Questions and uncertainties

Botanical mapping has a subjective nature, since it depends much on the surveyor’s map-

ping concepts and experiences, therefore, the current surveyors have to take into account

carefully how their predecessors had mapped the area (Takács and Molnár, 2009). During

the mapping of thematic data, e.g., vegetation habitats without administrative borders, it

is a common question, whether we are able to do hard or smooth classification regarding the

vegetation boundaries, where the geometric resolution and the definition of target classes

play an essential role.

Considering the “classification rule” of the botanists (e.g., Á-NÉR), there are some classes

where the distinction or delimitation between them is very difficult and subjective to the

botanist’s personal judgement. Examples are spontaneous successions, e.g., distinction be-

tween riverine willow shrubs (“J3” code in Á-NÉR) and willow mire shrubs (“J1a” in Á-NÉR,

generally Salix cinerea).

http://www.eea.europa.eu/publications/COR0-landcover
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3.1.3 Remote sensing analysis

Medium resolution Landsat satellite image analysis showed a decrease in the normalized

difference vegetation index in short-term (1992-1993) (Smith et al., 2000), which was caused

by dropping groundwater levels, documented and modelled in the region, e.g., by Vekerdy

and Meijerink (1998). Similarly to that, negative changes were detected in the wetness values

based on the Tasseled Cap transformation of Landsat, however, from 1997 a continuous

regeneration is experienced, except for older willow species (Kristóf, 2005).

Focusing on detailed vegetation analysis, advanced image interpretation techniques have

been commonly applied to remote sensing studies in the recent years (Blaschke et al., 2011),

however, in the test site of the current research, botanical vegetation habitat classifications

have been mostly based on traditional field surveying. Available aerial imagery was often

used as unprocessed background information for visualisation purposes as a basic background

layer for field work and for vector data representation (Takács and Molnár, 2009). Land

use/land cover classification of the floodplain has been primarily based on visual image

interpretation (Licskó, 2002), however, the different types of vegetation habitats, which are

in focus in the botanical analysis, have not been considered there.

The monitoring of forest ecosystems in the Szigetköz has been undertaken by the Forest Re-

search Institute (ERTI, Budapest) since 1986, also as a member of the Szigetköz Research

Group (in the Hungarian Academy of Sciences) from 1995 (Illés and Szabados, 2008). For-

est health status and its changes as an important indicator after tree growth rate on the

dramatically changed hydrological situation has been analysed by digital image process-

ing algorithms (pixel-based supervised image classification techniques) in the study of Illés

and Somogyi (2005), where the analysis was applied to different forest types based on or-

thophotos from 1991 and 1999. Despite some promising results, health status could not be

estimated for certain species. Another silvicultural study (ERTI, 2008) has concentrated

on the detection of leaf losses based on CIR aerial image (2008, 1 m/pixel, from VITUKI

Environmental Protection and Water Management Research Institute, Budapest). Though

unreliability has been demonstrated by the false inclusion of shadowy areas into the leaf

loss classes, it has been obvious that the region of Dunakiliti, Kisbodak and Lipót gave

worse values for leaf loss in comparison to the southern part where the water-recharging

system and the thicker sediment layer provide better conditions for the forests. Recently

in the frame of a Hungarian-Slovakian Cross-border Cooperation Programme (2007-2013,
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INMEIN,“Innovative methods for monitoring and inventory of Danube floodplain forests

based on 3D technologies of remote sensing”) the analysis of airborne laser scanning data

gave promising results for forest inventory (Király and Brolly, 2013).

3.2 Applied imagery

Aerial imagery was acquired for the present research over three test sites near to the vil-

lages Dunakiliti (DK), Dunaremete (DR) and Ásványráró (ASV)(Figure 3.3) in order to

study an area where the data of the most recent (2004) botanical survey is accessible

(Dunaremete) and other two sites, Dunakiliti, situated nearest to the Danube-diversion

point and Ásványráró, where the water-recharging system has a great influence. Digital or-

thophotos from 2000, 2005 and 2008 are available at the Institute of Geodesy, Cartography

and Remote Sensing (FÖMI, Budapest).

Figure 3.3: Test sites in the Szigetköz Danubian floodplain

In 1999 the University of West Hungary (UWH) was involved in a Phare Cross-Border-

Cooperation (CBC) Project (Márkus et al., 1999), where aerial imagery was provided by
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Eurosense (http://www.eurosense.com) and this aerial image material could be accessed

and applied to the current research. Since this data set consisted of CIR images, it was

selected for the analysis instead of the FÖMI orthophotos of 2000, which were RGB images.

Digital (respectively digitalized) orthophotos directly used in the study with the basic pa-

rameters are summarized in Table 3.1. In Appendix A we can find the images themselves

for the test site of Dunaremete in smaller format.

Table 3.1: Detailed information on the orthophotos used in the research. *Because of the
digital camera in case of 2008, the given scale cannot be directly compared to the others.

Orthophotos 2008 2005 1999
Source FÖMI, Budapest FÖMI, Budapest UWH, Phare CBC Project
Scale 1 : 74 000* 1 : 30 000 1 : 30 000

Geometric resolution 0.5 m/pixel 0.5 m/pixel 1.25 m/pixel
Applied recording type Digital,CIR Film,True Colour Film,CIR

Spectral resolution NIR, G, B RGB NIR, R, G
Camera type UltraCamX Wild RC 20 Wild RC 20

Acquisition time 06.08.2008 29.07.2005 03.08.1999
Solar azimuth angle 125.6◦ 209.4◦ 111.6◦

3.3 Botanical and silvicultural maps

Classified maps based on remotely sensed data always need verification by ground reference

information. After the study of the Environmental Laboratory (1987) field wetland identi-

fication requires the observation of three wetland parameters: hydric soils, hydrology and

hydrophytic vegetation. However, in this study vegetation data (silvicultural and botanical)

was used as an integrator of these wetland parameters.

In the present study thematic maps as reference data have aided the interpretation and

classification of the aerial image scenes. Because of the difference between the image acqui-

sition times and the field surveys (in the case of the vegetation habitat maps and the forest

inventory data as well), their application has been done with careful considerations.

The selection of the Dunaremete test site, as principal study area, has been directly influ-

enced by the location of detailed botanical investigations in the floodplain (see the over-

lapping areas in Figure 5.1). The square test site of botanical investigations (habitat map

in Figure 5.1) has been stated as a good representation about its surroundings, too. The

vegetation along the Danube is very similar to it regarding the hybrid poplar and willow

http://www.eurosense.com
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plantations and the near-natural woodlands between the dam and the river (Takács and

Keszei, 2004), where the Á-NÉR classification system (Chapter 3.1.2) has been applied.

These maps are available from 2004 and 2000 (Appendix B), covering an area of 25 km2

with the scale of 1:12 500, where the accuracy of the separation between different vegetation

habitats is around 10 m.

Whilst habitat maps from botanical inventory emphasize physiognomical aspects and vegeta-

tion dynamics in their classification system (Bölöni et al., 2008), silvicultural maps include

forest categorisation, where the concrete species are described. Detailed information on

forests at a scale of 1:10 000 (related to 2010) has been provided by the National Forest

Inventory (NFI), Szombathely. Regarding the digital silvicultural database the original ac-

quisition year was 2003, however, it has been continuously updated after field inspections.

In Appendix B the delineation of the silvicultural classes (Forest Stand Type, in hu. FATI1:

1. Faállomány Típusa) is presented and marked on the 2008 orthophoto (Figure B.3).
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Methods

The detailed analysis (Chapter 5 and Chapter 6) of the data set was based on digital image

analysis techniques presented in the current chapter. Chapter 4.1 is focusing on segmentation

techniques as the first step in object-based image analysis (OBIA), followed by the spectral

and geostatistical characterization (Chapter 4.2, Chapter 4.3). The significance of class

separability analysis is described in Chapter 4.4. Chapter 4.5 is introducing the supervised

classification algorithms applied. The closing section (Chapter 4.6) deals with the accuracy

assessment as a crucial part of any classification approaches.

4.1 Image segmentation

The first step of the object-based image analysis is the application of segmentation, where a

combined use of spectral and spatial patterns is normally built into the analysis (Lillesand

et al., 2008). The three main types of segmentation are: pixel- or histogram-based (involv-

ing only spectral characteristics), edge-based (looking for edges which separate homogeneous

objects) and region-based, which could have three sub-types: region growth, region merging

and region splitting algorithm (Lang et al., 2006). The region-based technique also called

as surface(-based) segmentation is probably the most well-known type, where the simplest

application is the quadtree segmentation approach based on the splitting of the image into

4 parts firstly and with the use of a homogeneity measure for each segment further splitting

and merging is applied (Barsi, 2013). Another important segmentation technique, the multi-

resolution segmentation approach (defined in the eCognition software environment) belongs

24
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to the region-based type as well, has been applied extensively in numerous geospatial stud-

ies. It is a bottom-up region merging technique, where smaller objects (firstly pixels) are

merged into larger ones based on the criteria set. As it was mentioned above, a hierarchical

network of image objects can be built in OBIA according to the segmentation results at dif-

ferent scales (using various scale parameters) and thus the representation of different spatial

resolutions is simultaneous (Levick and Rogers, 2008). Average image segment (object) sizes

are indirectly influenced by the scale parameter, which determines the maximum allowed

heterogeneity of the image objects. Besides the settings of the scale parameter, weights for

the image bands and for the shape and colour have to be defined. If the criterion for shape

is set to 0.3, it means, that it is considered with 30% contrary to the colour with 70% (Barsi,

2013). Weighting for other shape characteristics (compactness and smoothness) has to be

set as well, where 0.5-0.5 (50-50%) is often used. From the mentioned shape characteristics

compactness equals the ratio of the border length of the image object and the square root of

the number of pixels forming this object and smoothness is given by the ratio of the image

segment’s border length and the border length given by the bounding box of an image object

parallel to the raster (Benz et al., 2004). The expectation during segmentation algorithm

is that it will divide the image into relatively homogeneous and semantically significant

groups of pixels. However, after the first segmentation procedure improvement of ‘object

candidates’ (Burnett and Blaschke, 2003) is mostly needed to find optimum segmentation

parameters according to the scale and nature of features to be detected (Mathieu et al.,

2007). The segmentation based on the original VHR imagery could significantly slow down

the image analysis procedure. A potential solution for a faster application applied in the

study of Bucha and Slávik (2013) is primarily reducing image spatial resolution (in the

concrete example from 30 cm to 2.4 m).

4.2 Spectral characterization

Besides the additional spatial information (like distances, neighbourhood characteristics,

topologies) available in image segments, spectral information changes compared to pixels

and thus the variation of a given feature reflectance is reduced at the object level (Blaschke

et al., 2011). Spectral parameters, which have been involved in the latter analysis, are the

average pixel values of the single bands applied (also included the additional first principal

component layer, PC1, described in the introduction of Chapter 5.1) and vegetation indices.
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Vegetation indices are dimensionless, radiometric measures indicating relative abundance

and activity of green vegetation, including leaf-area index (LAI), percentage green cover,

chlorophyll content, green biomass and absorbed photosynthetically active radiation (APAR)

(Jensen, 2014). The Normalized Difference Vegetation Index (NDVI, Equation 4.1, a nor-

malized ratio of the near infrared and the red bands of the image, originally developed by

Rouse et al., 1973) is one of the most commonly applied vegetation index, also known as a

biophysical parameter that correlates with the photosynthetic activity of vegetation, since

it expresses the contrast between the high reflection in the near infrared channel and the

high absorption in the visible red channel for healthy green vegetation (Xie et al., 2008)

(compare to Figure 2.1). It has been often applied in order to make quantitative estimates

of plant canopies (Wyatt, 2000).

NDV I = NIR−R
NIR+R

(4.1)

The index can be influenced by additive noise effects (like atmospheric path radiance) and

highly sensitive to canopy background variations, where e.g., the soil is visible through

the canopy (Jensen, 2014). Generally speaking about image analysis procedures vegetation

indices are often treated as additional bands, nevertheless, in the object-based analysis

environment they can be accessed as object features.

4.3 Geostatistical characterization

The land cover types, like vegetation can be identified from remote sensing imagery by unique

spectral characteristics (Xie et al., 2008). However, aiming at vegetation classification, where

a study area is covered by vegetation of complex forms or different stages (which often occurs

in high spatial resolution), spectral responses could be similar among different vegetation

groups or could generate spectral variations for the same vegetation class (Sha et al., 2008).

In case of HR imagery, where a group of pixels needs to be combined to characterize sin-

gle trees, spectral variability for an individual tree (including sunlit crown, shaded crown,

influence of factors such as branches, cones and tree morphology) is not helpful in develop-

ing unique spectral signatures for object classification as it is common in per-pixel image

classifications (Wulder et al., 2004). Due to the high spectral variability vegetation patches

(more specifically forest stands or an individual tree) cannot be described by the utilisation
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of spectral characteristics only. Therefore, additional information is needed based on local

spatial statistics that describes spatial variability.

4.3.1 Texture analysis based on GLCM

Although there are variants of texture analysis methods, further investigations are focusing

on second-order statistics based on the co-occurrences of pixel values, commonly applied

in numerous land-cover and vegetation mapping studies based on remotely sensed images

(Berberoglu et al., 2007; Hájek, 2008; Nichol and Sarker, 2011; Wood et al., 2012; Szantoi

et al., 2013).

Pixel co-occurrences are described in the so-called grey-level co-occurrence matrix (GLCM),

which characterizes the probability that radiometric values of each pair of pixels from a

grey-scale image co-occur in a given direction and at certain lag distance (Haralick et al.,

1973).

Lévesque and King (2003) presented that the use of GLCM measures (besides semivari-

ance range and sill, explained in Chapter 4.3.2) has been advantageous for forest structure

and health modelling. Hájek (2008) has stated that GLCM textural characteristics have

an essential role in the discrimination of prevailing forest types on the level of forest com-

partments. Forested areas as well as urban land cover classification have shown significant

improvements in classification accuracies with the inclusion of GLCM in various studies

(Franklin et al., 2000; Carleer and Wolff, 2006; Kim et al., 2009). Laliberte and Rango

(2009) demonstrated that despite high spatial resolution (there: unmanned aerial vehicle,

UAV images) the low spectral resolution significantly effects the interpretation of the im-

agery where texture measures can improve the classification accuracy.

Definition of GLCM

The GLCM is an L × L matrix based on a grey-scale image with a given brightness value

range (mostly L = 256 for 8 bit data), where the value for each cell is defined by the

number of occurrences of a given grey-level-combination of 2 pixels (a pixel pair with a

defined h distance and θ direction which are given for a concrete matrix) divided by the

total possible number of grey-level pairs (Richards and Jia, 2006). h distance and θ direction
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could vary, thus numerous GLCMs exist for a selected image sample. For the GLCM itself

four important variables have to be defined:

1. Moving window size,

2. Direction of the offset (θ),

3. Distance of the offset (h),

4. Image channel used.

In case of directionally unbiased target classes, the average of all directions (0◦, 45◦, 90◦,

135◦) is commonly taken (Laliberte and Rango, 2009). The distance of pixels is normally

set to 1, comparing direct neighbours (Trimble, 2013). In addition the calculation of GLCM

(as any other type of textures) is strictly dependent on the spatial resolution of the imagery

(Jensen, 2014).

GLCM measures

For the characterization of the matrices Haralick et al. (1973) introduced 14 different metrics

derived from the GLCM and those are mentioned later as texture measures or textural

parameters. Besides GLCM, GLDV features (grey-level difference vector) are also used in

various applications, which is defined by the sum of the diagonals in the GLCM and hereby

it provides a measure of the absolute difference of neighbours (Laliberte and Rango, 2009).

From the GLCM measures 8 types have been often tested in literature (e.g., Hall-Beyer,

2007; Laliberte and Rango, 2009) and to these GLCM parameters additionally 4 GLDV

features are implemented in the eCognition Developer software as object features, which

have been analysed later in Chapter 5.1.4. The mentioned measures are summarized with

formulas in Table 4.1.
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Table 4.1: The most important textural parameters of GLCM and GLDV, tested later in
the current study. Pi,j is the normalized grey-level value in the cell i, j of the matrix, N is
the number of rows or columns, µi,j is the mean of row i and column j, Vk is the normalized
grey-level difference vector, where k = |i− j|. Based on Trimble (2013) where formulas are

described after Haralick et al. (1973).

Textural parameter Formula

GLCM mean µi,j =

N−1∑
i,j=0

Pi,j

N2

GLCM standard deviation σi,j
2 =

N−1∑
i,j=0

Pi,j(i, j − µi,j), σ =
√
σi,j2

GLCM correlation
N−1∑
i,j=0

Pi,j
(i−µi)(j−µj)

σiσj

GLCM entropy
N−1∑
i,j=0

Pi,j(− lnPi,j)

GLCM contrast
N−1∑
i,j=0

Pi,j(i− j)2

GLCM homogeneity
N−1∑
i,j=0

Pi,j

1+(i−j)2

GLCM dissimilarity
N−1∑
i,j=0

Pi,j |i− j|

GLCM angular 2nd moment
N−1∑
i,j=0

P 2
i,j

GLDV mean
N−1∑
k=0

k(Vk)

GLDV entropy
M−1∑
k=0

Vk(− lnVk)

GLDV contrast
N−1∑
k=0

Vkk
2

GLDV angular 2nd moment
N−1∑
k=0

V 2
k
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4.3.2 The semivariogram

The optimal selection of moving window size for texture analysis is crucial. Therefore, the

semivariogram has been suggested and applied in numerous studies, especially for the choice

of appropriate window size for GLCM computation (Carr and Miranda, 1998; Treitz and

Howarth, 2000; Tsai and Chou, 2006; Szantoi et al., 2013). The semivariogram (also called

as variogram elsewhere) is a commonly used function in spatial statistics, which relates

the semivariance to spatial separation and provides a concise and unbiased description of

the scale and pattern of spatial variability (Curran, 1988). In case of a spatially depen-

dent dataset, the semivariogram is used to estimate the analysed variable value in different

locations considering the spatial correlation of the sample data (Balaguer-Beser et al., 2011).

The mathematical formula for the empirical semivariogram is defined in Equation 4.2 after

Curran (1988):

γ(h) = 1
2m

m∑
i=1

[z(xi)− z(xi+h)]2 (4.2)

where xi and xi+h are geographical points in the image separated by ~h vector called as lag

distance. z(x) is the attribute value (in RS image analysis the radiometric value) and m

means the number of point pairs separated by ~h vector. The average semivariance γ(h) is

visualised for increasing ~h in the graph of the semivariogram (Figure 4.1).

Figure 4.1: Schematic representation of a semivariogram.

Larger semivariances mean that the pixels divided by the lag (~h) are less similar. For

the characterization of the variogram graph one of the most important parameters is the
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range (Figure 4.1), which is a point on ~h axis where the semivariance reaches its maximum.

Regarding sample data γ(h) reaches the range approximately at 95% of the sill (it is the max-

imum level of the semivariance) (Curran, 1988). Since the range defines the distance above

which ground resolution elements are not related, a slightly larger lag distance could be well

applicable for the optimal window size. However, the “classic” semivariogram is relatively

unusual and e.g., planted woodlands can be rather described by “periodic” semivariograms

(Curran, 1988), which will be presented in Chapter 5.1.3.

4.4 Class separability analysis

It has been discussed in several studies (e.g., Peng, 2005; Pereira et al., 2007; Laliberte et al.,

2012; Silva et al., 2012 that a proper feature selection method has to be used in pattern

recognition related applications in order to minimize the classification error. Besides aiming

at higher classification accuracies, the application of feature selection methods is related to

the reduction of redundant information in order to speed up the classification by an optimal

number of the evaluated features (Mahmoud et al., 2011; Bindel et al., 2011).

Using any of the decision rules for classification (e.g., the maximum likelihood method,

described later in the beginning of Chapter 4.5) generally cannot lead to a perfect separation

of classes (see a representation for two classes in a two dimensional multispectral space

related to a pair of probability distributions for a selected feature in Figure 4.2).

Beyond the mean values of classes the overlap is influenced by the standard deviations of the

distributions, therefore, a combination of both the distance between means and a measure

of standard deviation is required (Richards and Jia, 2006). Although the calculation of the

probability error (Bayes error) (Fukunaga, 1990) should be the optimal measure for sepa-

rability analysis and feature selection, its explicit and analytic expression, respectively its

direct minimization is difficult to get (Guo et al., 2008). The following three major categories

of separability measures: probabilistic distance, divergence and correlation-based measures

are sought as alternatives, like easily evaluated criteria with a realistic performance, which

generally provide bounds around the Bayes error (Guo et al., 2008).
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Figure 4.2: Representation of a two dimensional multispectral space by two features (x1
and x2) with two (spectral) classes and below visualizing the case of partial separability by

probability distributions for the feature x1 where some overlap is indicated.

From the group of probabilistic measures the Bhattacharyya distance (B in Equation 4.3

after Nussbaum et al., 2006; Mahmoud et al., 2011) is one of the most popular measures:

B = 1
8(m1 −m2)2 2

σ2
1 + σ2

2
+ 1

2 ln
[
σ2

1 + σ2
2

2σ1σ2

]
(4.3)

where m1 and m2 are the mean values and σ1 and σ2 are the standard deviation values of

the two feature distributions. For a more detailed derivation of the Bhattacharyya distance

see Kailath (1967). It has been stated as a convenient equation for normal distributions, but

not rejecting the complete group of non-Gaussian cases and also discussed for a family of

gamma distributions (Fukunaga, 1990). However, the infinite nature of the Bhattacharyya

distance (B), having a range of a half-closed interval [0,∞), makes its interpretation difficult.

Therefore, a similar measure, but with a finite dynamic range has been introduced called

Jeffries-Matusita distance (JM in Equation 4.4) (Richards and Jia, 2006).

JM = 2
(
1− e(−B)

)
(4.4)

This separability measure has been applied in Section 5.1 and Section 6.3. The presence of

the exponential factor in Equation 4.4 gives an exponentially decreasing weight to increasing
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separations between the two analysed classes. JM distance as a function of separation

between (spectral) class means is asymptotic to 2.0, thus, a JM distance of 2.0 would imply

a classification of pixel (image object) data into those classes with 100% accuracy (Richards

and Jia, 2006).

Thomas et al. (2002) emphasized that JM distance has advantages in case of observing

normal distributions and therefore, in case of a parametric classifier (e.g., maximum likeli-

hood) a low degree of separability would mean errors of omission/commission, however, it

was indicated there that the relationship between separability and classification accuracy is

non-linear. In the study of Silva et al. (2012) it has been summarized that generally JM

distances above 1.8 are the indicators for good separability and the distance value below

1.8 would mean the possibility of confusion in the classification procedure between classes.

However, important drawbacks of the analysed distances are the general assumption of nor-

mal distribution, the comparison of only two classes at once (Bindel et al., 2011) and in

addition, they are quite computationally intensive.

4.5 Supervised classification algorithms

After selecting the most appropriate parameters for the analysis of pre-defined target classes

supervised classification algorithm(s) can take place. Supervising means that the catego-

rization of pixels, in an OBIA environment the classification of image objects (segments) is

based on the training sample selection, where the numerical descriptors of the various land

cover types (as target classes) present in the image are defined carefully to the computer

algorithm (Lillesand et al., 2008). Finding a good representative dataset for each class in-

volved in the analysis is crucial for a proper implementation of supervised classification (Lu

and Weng, 2007). After the selection of training samples (often called as training stage) the

classification of unknown segments is based on those numerical strategies (decision rules)

which can be employed to compare them with the training sites (Lillesand et al., 2008).

Assuming the Gaussian (normal) distribution of our data the maximum likelihood classi-

fication as a parametric classifier is often applied where a statistical distance (probability

value) is calculated based on the mean values and the covariance matrix of the training sets

(Tempfli et al., 2008). It is referred to as a parametric statistical supervised method, since

it has been assumed that the classes can be modelled by probability distributions and, as

a consequence, they are described by the parameters of those distributions (Richards and
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Jia, 2006). Nevertheless, this type of classifiers often produces noisy results in complex

landscapes and hinder the integration of those ancillary data into the analysis which are

non-statistical in nature (Lu and Weng, 2007).

Other supervised techniques without distribution models and statistical parameters also

exist, which are often referred to as non-parametric geometric methods (e.g., support vector

machine, SVM or neural network, NN, a detailed description about these methods is found

in Richards and Jia, 2006, nevertheless, these classifiers have not been within the scope of

the current research).

In the following sub-sections (4.5.1 and 4.5.2) the class description based fuzzy algorithm (ap-

plied later in the analysis part in Chapter 5) is described firstly, which is rather a statistical

classifier, however, instead of probability distributions the so-called membership functions

are used. Secondly a special type of hierarchical classifier, the decision tree approach is

presented considered as a non-statistical classification method (applied in Chapter 6).

4.5.1 Class description based fuzzy (CDBF) algorithm

In case of the so-called soft classifiers, uncertainties regarding image object classifications can

be incorporated into the analysis. The most powerful soft classifiers are fuzzy classification

systems (Benz et al., 2004) where the fuzzy logic means that instead of a traditional binary

set with true or false response values a range between 0 and 1 is considered. In the fuzzy

supervised classification fuzzy training class weights are defined by the known mixtures

of various feature types, where a membership grade is assigned to a classified pixel or

object concerning its membership in each target class (Lillesand et al., 2008). Each class

of a (potentially hierarchical) classification scheme contains a class description (Figure 4.3),

which consists of fuzzy membership value functions for selected features, like vegetation

index and/or textural parameters (applied later in Sub-section 5.1.5). An example for

membership function concerning a certain textural feature (GLDV entropy) is found in

Figure 4.4.
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Figure 4.3: Class description derived from the eCognition software, for a certain class,
where dam veg(asv) means the class of Dam vegetation from the Ásványráró test site. The
listed textural features and the vegetation index are applied in the class description with

separate membership functions, see an example in Figure 4.4.

Figure 4.4: Membership function derived from the eCognition software for the textural
feature: GLDV entropy applied to the PC1 band from the 2008 image scene (Ásványráró).

In order to get a common crisp classification for mapping purposes the fuzzy results have

to be translated back to a crisp value, where the maximum membership degree of the fuzzy

classification is applied as crisp class assignment (also called as defuzzification) (Benz et al.,
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2004). However, if the maximum membership degree of a class is below a certain threshold,

the area (image segment) remains unclassified to ensure minimum reliability.

The specific algorithm applied in the software environment eCognition is based on a mem-

bership value based fuzzy class evaluation, where the membership values concerning one

specific feature are computed from the training set of image objects. In the fuzzy clas-

sification result there are actually three (default set in the software) potential classes for

evaluation purposes concerning a certain image object, like the three best classes with the

highest membership degrees, calculated from the membership value based class descriptions

for the selected feature set (Trimble, 2013). In practice as a classification result, image

objects are labelled according to the highest membership degree.

CDBF algorithm has been often applied during object-based image analysis methods (find

e.g., in Johansen et al., 2007; Cleve et al., 2008; Jones et al., 2011), however, with the

implementation of machine-learning functions in OBIA, like decision tree, random trees and

support vector machine, various research studies (e.g., Mallinis et al., 2008; Heumann, 2011;

Zhang and Liu, 2013) have been focusing on the evaluation of these latter classification

methods.

4.5.2 Decision tree classification

The previously described CDBF algorithm belongs to the group of single stage classifiers,

where each data sample is always tested against all classes. Contrary to that, in the case of

multi-stage classification techniques, decisions are taken in various stages in order to classify

each element (pixel or segment) of the image (Richards and Jia, 2006) and the sample is

tested against only certain subsets of classes, thus, unnecessary computations are eliminated

(Safavian and Landgrebe, 1991). The decision tree (DT) approach has a hierarchical nature,

which is based on the concept of successively splitting the dataset into increasingly homo-

geneous subsets until terminal nodes are assigned (Laliberte and Rango, 2009). It is not

based on inferential statistics and can process virtually any type of spatially distributed data

(Jensen, 2014). Decision-tree classifiers are able to capture non-linear, hierarchical patterns

and work as an excellent data reduction tool, capable of finding significant variables, if the

dataset contains a large number of explanatory variables (Laliberte et al., 2007). A DT

consists of a number of connected classifiers (decision nodes), where the root node divides

firstly the image dataset to two groups of pixels/segments (i.e., a binary tree representing
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Boolean functions), the internal nodes contain the further decision rules and the tree ends

in the leaf nodes with class assignments (see an example in Figure 4.5).

Figure 4.5: Example for a binary decision tree, where C1, C2 and C3 are the target classes
(represented as leaf nodes). x1 and x2 are two features analysed and used in the internal

nodes.

The leaves of the decision tree are often called as response or categorical variables (target

land use/land cover classes), whilst the observed parameters from the training samples are

the explanatory variables, which can be categorical or continuous (like spectral response in

bands, elevation) (Laliberte et al., 2007). Explanatory variables are applied for the building

of decision rules for the internal nodes, which rules can be expressed in the form of ‘IF

condition THEN action ELSE action’ statements.

The three main tasks considered in the design of a decision tree are (1) finding the optimal

structure for the tree, (2) choosing the optimal subset of features at each node and (3)

selecting the decision rule to apply at each node (Richards and Jia, 2006). Since classification

accuracy and efficiency are heavily influenced by the tree chosen, heuristic methods for

decision tree design have been developed recently (Safavian and Landgrebe, 1991). These

methods also called as decision tree inducers build an algorithmic framework in order to

automatically construct a decision tree from a given dataset (Rokach and Maimon, 2005).

The tree growing-pruning approach of Breiman et al. (1984) is a top-down decision tree

inducer, which group is clearly preferred in the literature contrary to the bottom-up ap-

proaches (Rokach and Maimon, 2005). The above mentioned method from Breiman et al.
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(1984) has been implemented in eCognition 8.9 which is latter applied in Chapter 6.

Various research studies have shown promising results with the application of decision tree

algorithms based on HR imagery. Laliberte and Rango (2009) have employed decision

tree analysis for the selection of optimal texture features based on UAV (unmanned aerial

vehicles) imagery for differentiating rangeland vegetation. He et al. (2004) discussed the

integration of ancillary data (e.g., soil type, elevation) into the DT approach in order to aid

the classification process of grasslands, where vegetation types have been strictly associated

with other natural conditions. In the research study of Heumann (2011) decision tree clas-

sification has been combined with another machine-learning approach, the support vector

machine classification in the OBIA environment, applied on WorldView-2 images for the

mapping of mangroves. Chubey et al. (2006) have applied DT analysis in order to iden-

tify relationships between the derived image object metrics and individual forest inventory

parameters based on Ikonos-2 satellite imagery. Liu et al. (2006) have emphasized the com-

bination of decision tree classifier and OBIA to generate reusable, transferable classification

rules, and hereby, to accelerate the automation process of RS information extraction. Nev-

ertheless, a possible drawback of the DT classifier could be the increasing computation time

and memory space in case of larger class numbers.

4.6 Accuracy assessment

Due to a direct need from the user community for objectively verified and communicated

vegetation mapping products derived from remote sensing imagery, accuracy assessment

techniques are applied to determine the quality of the resulting maps (Xie et al., 2008). It

is vital to use accuracy assessment before working with these interpretations in scientific

investigations and policy decisions, where the interpreted data builds up a database for

latter analysis. Accuracy influences the information for land management and their validity

and it is as well a basis for scientific research.

During the accuracy assessment, data comparison is done between the remote sensing result

and some ground reference information, therefore a careful selection of reference data derived

from field survey or other thematic datasets is required (Morgan et al., 2010). The collection

of robust ground reference information is of high importance in order to represent each target

category in an adequate manner (Wyatt, 2000).
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Map accuracy assessment has two types, where positional accuracy describes the accuracy of

the location of map features and thematic accuracy describes whether the label or attribute of

a certain class in the map is the same as in the reality (Congalton and Green, 2009). Further

on, it is essential to distinguish between two kinds of thematic accuracy assessments. In

case of a non-site specific one, the comparison is only based on area percentages (comparing

overall areas to ground estimates), which could hide the spatial misclassification, whilst a

site-specific assessment compares actual places on the ground to the same place on the map

resulting in a measure of correct percentage (Congalton, 2004).

The confusion matrix (also called as error matrix, Table 5.5) as a site-specific thematic

accuracy assessment method gives the basis for many quantitative metrics of classification

accuracy (Foody, 2002) and it has been accepted as the standard descriptive reporting tool

for the accuracy assessment of remotely sensed data since the mid-1980s (Congalton, 2004).

It is a square array of numbers organized in rows and columns that expresses the number

of sample units assigned to a certain classified category (represented in the rows) relative

to the actual category as indicated by the reference data in the columns (Congalton, 2004),

nevertheless, the placement of rows and columns are transposed sometimes. The major

diagonal of the error matrix represents the number of properly classified pixels (running

from upper left to lower right), whilst the non-diagonal elements in the columns mean the

omission errors and in the rows they stand for the commission errors (Lillesand et al., 2008).

The most common measures calculated from the confusion matrix are the overall accuracy

and the Kappa coefficient (sometimes called as Kappa index of agreement, KIA). However,

a variety of other measures can be derived from the matrix as well, e.g., the accuracy of

individual classes, if the user is interested in specific vegetation groups (Xie et al., 2008).

The overall accuracy is computed by the division of the total number of correctly classified

pixels by the number of the reference pixels. Accuracies for concrete classes, like producer’s

accuracy is calculated from the number of correctly classified pixels (in each class) by the

sum of the training set pixels for the current category, whereas user’s accuracy takes into

account the number of pixels that were classified in that category (the sum of the rows) as

denominator and hereby, it is often called as a measure for the commission error. The name

of producer’s accuracy refers to the interest of the producer concerning the goodness of a

certain area which has been classified, whilst in case of the user’s accuracy, the probability

is indicated, whether a sample unit on the map actually represents that category on the

ground (Congalton, 2004).
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An error matrix is an appropriate beginning for many analytical statistical techniques, es-

pecially discrete multivariate techniques, which have been used for performing statistical

tests on the classification accuracy of remote sensing data (Congalton, 2004). From these

techniques the Kappa analysis (Cohen, 1960) is often applied, in order to statistically de-

termine whether one error matrix is different from another (Congalton and Green, 2009).

Besides that, using this technique, it is possible to test whether an individual land-cover

map generated from remote sensing imagery is significantly better than a map generated by

a random assignment of labels to areas (Congalton, 2004). The KHAT statistic (actually

κ̂, an estimate of Kappa) is based on the difference between the actual agreement in the

confusion matrix (i.e., the sum of the correctly classified pixels in the major diagonal) and

the chance agreement, calculated by the row and column totals in the marginals (Congalton

and Green, 2009). The computation of KHAT statistic is as follows in Equation 4.5 after

Lillesand et al. (2008)

κ̂ =
N

r∑
i=1

xii −
r∑
i=1

xi+x+i

N2 −
r∑
i=1

xi+x+i

(4.5)

where

r = number of rows in the error matrix

xii = number of observations in row i and column i on the major diagonal

xi+ = sum of observations in row i, generally shown as marginal total in the right side of

the matrix

x+i = sum of observations in column i, shown as marginal total at the bottom of the matrix

N = total number of observations included in the error matrix.

The possible ranges for the Kappa statistic have been characterized into three groups, where

a strong agreement is described by a value greater than 0.80, a value between 0.40 and

0.80 stands for moderate agreement and a value below 0.40 represents poor agreement

(Congalton, 2004). The Kappa analysis was introduced to the remote sensing community

in 1981 and since then it has become a standard component of proper accuracy assessment

procedure and nowadays it is required in most of the image analysis software packages

(Congalton and Green, 2009).
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Spectral-textural classification

Most part of the image analysis, including texture calculations, was performed using the

object-based image analysis software eCognition Developer 8.9 (www.ecognition.com). Im-

age calculations, like image corrections (e.g.,wrong line correction) and the calculation of

principal component layers were worked out in Erdas Imagine 2011 (www.hexagongeospatial.

com). Semivariogram computations were done in the R statistical software (http://www.

r-project.org). Map layouts were composed in Esri ArcGIS 10.1 (www.esri.com).

5.1 Sample application to the study site of Dunaremete

As it has been described in Section 1.2, the analysis has been firstly concentrated on de-

veloping an appropriate aerial image classification method with the inclusion of texture

characteristics in order to identify and map predefined vegetation habitats based on the

test area (aerial images and ancillary data) in the Szigetköz Danubian floodplain. One of

the three test sites, near to the village Dunaremete (Figure 5.1) with the size of approxi-

mately 2.5 km2 has been selected as principal test site, adapted to the extent of the available

botanical maps (2000, 2004).

The current analysis was carried out for three different dates (Table 3.1) separately, however,

with the future aim of temporal connectivity. It is essential that the images have different

spectral and spatial resolution.
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Figure 5.1: The study site of Dunaremete (DR). OSM in the legend means the source of
Open Street Map.

Primarily, first principal component (PC1) bands as additional layers for the image analysis

were calculated for each image scene (2008, 2005 and 1999) in the ERDAS Imagine software

environment, in order to represent the variability of the data in one single band which can

be later used for texture calculations (Tsai and Chou, 2006). In the further steps, it was im-

portant to conduct the analysis at a single geometric resolution, since further investigations

are concentrating on the temporal comparability of texture measures of selected classes.

Different ground spatial resolutions would lead to significantly different textures for most of

the measures, as shown in Table 5.1 for the years 2008 and 2005, concerning samples from

the class of Hybrid poplar.

Therefore, the 2008 and 2005 images were resampled to 1.25 m/pixel ground spatial reso-

lution according to the original geometric resolution of the 1999 image. The main analysis

steps for the principal test site of Dunaremete (including the above-mentioned ones) are

summarized in Figure 5.2.
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Figure 5.2: The main analysis steps applied to the principal test site of Dunaremete.
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Table 5.1: Comparison of three texture measures for different ground spatial resolutions
(GSR), regarding a concrete vegetation class (Hybrid poplar). Textures were calculated
from the first principal component band (PC1) of the 2005 and 2008 image scenes, for the

20 m×20 m samples.

GSR 0.5m/pxl 1.25m/pxl 0.5m/pxl 1.25m/pxl
Texture\Statistics Mean Standard Deviation

GLCM Contrast (2005) 268.90 517.75 77.38 170.85
GLCM Contrast (2008) 143.05 386.52 49.77 124.08

GLCM Correlation (2005) 0.79 0.43 0.07 0.19
GLCM Correlation (2008) 0.89 0.61 0.03 0.12

GLCM Entropy (2005) 8.08 7.23 0.19 0.11
GLCM Entropy (2008) 7.69 7.17 0.23 0.10

5.1.1 Separation of water bodies

Firstly the differentiation of water bodies from the terrestrial/aquatic-terrestrial habitats

was carried out on the segmented images, since their spectral characteristics are signif-

icantly different from the vegetation classes. For image segmentation a combination of

quadtree and multi-resolution (MR) segmentation algorithms (described in Section 4.1) were

applied in order to fasten the relatively time consuming MR segmentation. Firstly image

objects are created by the quadtree based segmentation algorithm with the scale parameter

of 30 and after that instead of using pixels the multi-resolution segmentation is based on

the quadtree-segments applying the following parameters: scale parameter=40, shape cri-

terion=0.3, compactness criterion=0.5. The classification of water bodies is based on the

here-created image objects (Figure 5.3). Since the NDVI (1999) and the modified NDVI

(BlueNDVI) (2008) values (Table 5.2) provide a good discrimination between water bodies

and vegetation habitats in general, they were applied for the class description (described in

Sub-section 4.5.1) of water bodies. BlueNDVI has been suggested in the study of Petersen

et al. (2005) stating that it gave better results for vegetation separation in comparison to

the original NDVI with the red band. The analysis of the RGB aerial image from 2005

was not straightforward due to the missing NIR band, which is always needed for an ap-

propriate differentiation between water and any other land cover classes. Nevertheless, it

was found that indices for vegetation delineation have been suggested for true colour im-

agery by Meyer and Camargo Neto (2008) and by Gitelson et al. (2002). Applying one of

these vegetation indices: ExG-ExR=(2×G-R-B)-(1.4×R-B) by Meyer and Camargo Neto

(2008) or (G-R)/(G+R) by Gitelson et al. (2002) in combination with the DN value from

the Blue band gave almost the same results with the need for manual improvements. Since
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the calculation for VI=(G-R)/(G+R) is more straightforward, it was applied in the analysis

afterwards. In Table 5.2 the applied vegetation indices are summarized.

Table 5.2: Vegetation indices applied to different-year images with different spectral res-
olutions for the test site of Dunaremete.

Orthophoto 2008 2005 1999
Spectral Resolution NIR, G, B RGB NIR, R, G

Vegetation Index modified NDVI VI from G,R NDVI
Formula (NIR-B)/(NIR+B) (G-R)/(G+R) (NIR-R)/(NIR+R)

Figure 5.3: Segmentation example after quadtree and multi-resolution segmentation ap-
plied to the 2008 image of Dunaremete. Besides that the classification of water bodies based

on the modified NDVI.
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5.1.2 Classifying vegetation

Target vegetation classes were defined by a synoptic analysis of aerial imagery and ancillary

data, firstly concentrating on the most occurring and characteristic vegetation patterns,

where the patches could be easily identified by human eye, and they cover a significant

area. The Á-NÉR botanical categorization (Sub-section 3.1.2) played an essential role in

the definition of target vegetation classes. Next to the water bodies a significant area is

covered by reed referred to as sedge in an earlier study, Kollár et al. (2011a), with the Á-

NÉR code of B1 standing for Sedge and reed. Á-NÉR classes could not be always adapted to

the aerial image based classification system, since some of the classes (e.g., Uncharacteristic,

planted forest with the Á-NÉR code of R3, presented in Appendix B) don’t describe species

composition. Nevertheless, the species for the current case of R3 could be identified as

‘mainly willow’ after personal discussions with István Hahn (ELTE, Department of Plant

Taxonomy and Ecology, Budapest).

For the analysis of woody vegetation, it was essential to involve detailed description from

the silvicultural inventory (Appendix B, Figure B.3). The most commonly occurring forest

stand types in the scene are

• hybrid poplar (FATI1: 059; Main tree species:Populus x euramericana ’Pannonia’,

FAFK: 723, an example for typical poplar stands is presented in Figure 5.4)

• mixed hybrid poplar (FATI1: 062; Main species: Populus x euramericana ’Pannonia’,

FAFK: 723, Populus x euramericana ’Robusta’, FAFK: 713, Populus x euramericana

’I-273’, FAFK: 727)

• domestic poplar (FATI1: 066; Species: Populus canescens, FAFK: 742)

• mixed willow (FATI1: 074; Species: Salix alba, FAFK: 811)

• willow (FATI1: 073; Species: Salix alba, FAFK: 811, Figure 5.5),

where FATI1 stands for Forest Stand Type (FST), FAFK for the occuring Tree Species.

As mentioned in Section 4.2, the classification of vegetation habitats based on high resolution

imagery (<5 m/pixel) is not straightforward in an object-based environment because of the

spectral heterogeneity of the target vegetation patches.
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Figure 5.5: Willow species in the test site of Dunaremete. Photo from the fieldwork with
István Hahn (06.11.2010)

Figure 5.4: Hybrid poplar stand in the Szigetköz near to the village Lipót. Photo from
the fieldwork with István Hahn (06.11.2010)

Especially the forest crown reflectance represents always a complex mix of foliage spectral

properties with other sources of variability including atmospheric effects, shadow pattern,

background composition and instrument noise (Hájek, 2008).
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Since the result of a classical multi-resolution segmentation (e.g., Figure 5.3) contains non-

regularly shaped objects with spectrally homogeneous nature (homogeneity depends actu-

ally on the set of scale parameter for the segmentation approach), differences in spectral

heterogeneity between image segments can be hardly studied on those image objects. There-

fore, image spectral and textural properties for each vegetation habitat were assessed on a

rectangular objects’ basis resulting from the chessboard segmentation algorithm, where the

terrestrial land was divided into unique square image objects with a predefined size.

Earlier findings (Kollár et al., 2011a) related to the present research but to a smaller test site

(180 000 m2) have shown the successful use of chessboard-like image objects in vegetation

classification. The size of the objects (segments) defines as well the minimum mapping unit

of these classes.

The optimal size of the square segments was derived from a geostatistical analysis, described

in Sub-section 5.1.3. The underlying theory is introduced in Sub-section 4.3.2.

In Figure 5.6, five square segments are presented as examples for each target vegetation

class with an extent of 40 m×40 m, based on a single layer, the first principal component

(PC1) from 2008.

Figure 5.6: Target vegetation classes represented by 40 m×40 m square samples (2008,
PC1, GSR: 1.25 m/pixel).

1)Reed, 2)Hybrid poplar, 3)Domestic poplar 4)Willow, 5)Willow & poplar.

The above-listed classes are present in each analysed year, except for the Domestic poplar

(the 3rd sample in Figure 5.6) (“hazai nyáras” in the Hungarian designation, fitting to the

silvicultural data, FATI1: 066; Species: Populus canescens, FAFK: 742) which appears only

in 2008.

5.1.3 Application of geostatistics

As it has been described in Sub-section 4.3.1, texture characteristics based on the GLCM

were analysed in detail for the target vegetation classes. The size of the square image
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objects for the GLCM calculation was defined using semivariogram analysis (described in

Sub-section 4.3.2, presented for the current case in Figure 5.7). Since target classes are

vegetation patches with repetitive patterns, at least one period of the semivariogram has

to be covered by a square-image object. The solar azimuth angle of the image acquisition

time has a great influence on the arrangement of shadowy areas which is a significant factor

in the calculation of textures. It means that aerial images are anisotropic and directional

variograms give a more exact description about the spectral variability.

Figure 5.7: Directional semivariograms of the image acquired in 2008 with a solar azimuth
angle of 126◦ for the target vegetation classes.

Directional semivariograms were computed in the R statistical software environment based

on 40 m×40 m square image segments (Figure 5.6) as samples from each target vegetation

class from the year 2008, based on PC1. Directional means that they have been calculated

along the direction of the supposed minimum continuity (126◦: the earlier mentioned solar

azimuth angle) in order to describe the maximum spectral variability. After the visual

interpretation of the graph (Figure 5.7) 20 m×20 m (16×16 pixels for the 1.25 m/pixel

GSR) square objects were chosen concerning the optimal window size for texture analysis,

which is correspondent to the findings by Tuominen and Pekkarinen (2005) applied to forest

stand and bog analysis in southern Finland based on aerial photography.

GLCM needs further variables to be defined (described in Sub-section 4.3.1). For the di-

rection of the offset the “average of all directions” and for the distance the default one

(analysing direct neighbourhood) was set. Nevertheless, directional GLCMs related to the
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solar azimuth angle in the different years were tested as well and analysed further in Sub-

section 5.1.4. Though, NIR band represents the highest reflectance values for healthy veg-

etation in general, it is missing in image 2005, therefore, the PC1 layer was used as basis

for the calculations due to its nature of representing the maximal variability from the ex-

isting three bands in the orthophotos and hereby, providing a basis for comparable textures

between the different years.

5.1.4 Feature selection

The selection of the most appropriate parameters from the numerous potential descriptors

is a crucial step in any image classification approaches. Recent analysis (Kollár et al.,

2011a,b) related to the current study has already proven the favourable use of GLCM

texture measures for a smaller site (180 000 m2) within the same research area, where

the concrete texture features were chosen after the recommendations of Hall-Beyer (2007),

selecting GLCM mean, correlation and entropy (formulas are found in Table 4.1). Two other

studies applied GLCM standard deviation instead of GLCM mean in the textural parameter

set (Kollár et al., 2013b,c).

However, since redundant information often exists and hereby, decreases the speed of the

analysis and reduces the efficiency of the classification, an objective method for parameter

selection is necessary. The statistical class separability analysis (described in Section 4.4) has

been found as a robust approach for selecting the most significant parameters and therefore,

it was applied to the potential features (parameters/descriptors) in the current analysis, as

it has been described in a recent publication (Kollár et al., 2013a). 8-8 GLCM parameters

(all-directional and directional), 4-4 GLDV parameters (Table 4.1) and spectral descriptors,

like vegetation indices (Table 5.2), average DN of PC1 and average DN of the Green band

were analysed at the square-image objects’ basis for the best separability measures. The

Jeffries-Matusita (JM) separability calculation was applied to each class pair for the three

different years (2008, 2005, 1999) based on a sample size of minimum 20 square image

objects for each target class. Although in the literature by Congalton and Green (2009)

the collection of a minimum of 50 samples for each map class is recommended as a general

guideline for maps of less than 1 million acres in size and fewer than 12 classes, it could not

be followed in the current study because of the relatively small test site and the 20 m×20 m

square units taken as samples.
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Separabilities for class pairs in different years gave different results. Nevertheless, in order

to work out a consistent analysis for the 3 years, the same textural and spectral descriptors

were chosen for all the years.

From the textural parameters GLCM standard deviation, GLDV entropy, GLCM contrast

and GLCM mean were chosen as the four best textural descriptors with the combination of

vegetation index as the most significant spectral descriptor. In Table 5.3 JM separability

values are shown for the selected (four textural and one spectral) parameters for 2008.Each

texture measure represents the all-directional type. Directional GLCMs (Appendix C) did

not give significantly better separabilities than the all-directional ones. Concerning the

different textural parameters although GLCM mean gives a JM≥ 1.8 only for two class

pairs, it is still significant, since it is the only one textural parameter describing separability

between Hybrid poplar and Domestic poplar classes.

Table 5.3: Jeffries-Matusita separability analysis for the originally chosen target vegeta-
tion class pairs (Dunaremete, 2008) by the selected descriptors

GLCM StDev GLDV Ent GLCM Cont GLCM Mean mNDVI
HP-SP 0.0 0.7 0.5 1.9 1.9
HP-W 1.9 1.6 1.6 1.4 2.0
HP-WP 1.6 0.4 0.4 0.4 1.9
HP-RD 1.8 0.9 1.0 2.0 2.0
SP-W 2.0 1.9 1.8 0.4 1.1
SP-WP 1.7 0.5 0.7 1.0 0.6
SP-RD 1.8 1.8 1.9 1.0 1.9
W-WP 0.5 1.4 1.3 0.4 0.2
W-RD 2.0 2.0 1.9 1.1 1.0
WP-RD 2.0 1.8 1.8 1.4 1.3∑ of pairs

where JM≥ 1.8 6 4 4 2 5

5.1.5 Classification algorithm

As it has been described in detail in Sub-section 4.5.1 the class description based fuzzy

(CDBF) algorithm was applied for the classification. The selection of an appropriate number

(at least 20) of vegetation samples (square image objects in that case) was a requirement to

describe class characteristics by membership functions (computed from the sample statistics)

concerning the earlier derived and analysed spectral and textural parameters. Classification

was based on the ‘chessboard-type’ image segments. The labelling of objects depends on

the highest probability derived from the membership values. Besides the here applied crisp
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class assignment, probabilistic labels (classes) could be also used due to the fuzzy results

for each image segment, however, this kind of analysis was not applied in the scope of this

study.

5.1.6 Results

For the evaluation of classification performance appropriate accuracy assessment is inevitable

(described in detail in Section 4.6). Since from the same time, as the aerial image acqui-

sition took place, no reference map is available and it was not possible to collect reference

data for the past scenes, the often used random or stratified random sampling approaches

for reference sample selection could not be applied. Instead of these methods, reference

samples were selected manually, based on visual image interpretation. Similarly as in the

training stage of the classification, 20 m×20 m square image segments (the same number as

for the training sample set and additionally 50 reference samples as background/unclassified

area) were carefully chosen, not including any sample segments from the original training

set. The most important accuracy measures (overall accuracy, OA and Kappa coefficient, κ)

were calculated. Accuracy results are listed and compared in Table 5.4 representing the dif-

ferent feature sets applied to each year. Firstly the use of spectral parameters (mean of PC1

and VI) only was evaluated, then the use of 3 texture features after Kollár et al. (2013b,c),

followed by the application of 4 textural parameters chosen by the Jeffries-Matusita separa-

bility analysis presented before and in the end the combination of the 4 textural parameters

and the vegetation index (described in Kollár et al., 2013a). For the best classification result

the complete error matrix is presented in Table 5.5. Classified maps are presented for each

year (2008, 2005, 1999) separately in Figure 5.8.

Table 5.4: Accuracy assessment of the classification results (DR image sample for 2008,
2005 and 1999) concerning different parameter sets. OA: overall accuracy.

Aerial images 2008 (B,G,NIR) 2005 (B,G,R) 1999 (G,R,NIR)
Features applied\Acc.measures OA Kappa OA Kappa OA Kappa

Mean of PC1, VI 68% 0.63 65% 0.58 64% 0.57
3 textures 72% 0.67 60% 0.53 61% 0.54

4 textures after JM 82% 0.79 77% 0.72 75% 0.71
4 textures after JM + VI 87% 0.84 83% 0.80 82% 0.78

The use of textural descriptors (defined using JM analysis) provided significant improve-

ments (greater than 10% percent increase in overall accuracy for each year) in comparison
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to the solely spectral parameter based classifications and gave better accuracies than the

initially used texture measures as well. The best classification results were reached by the

inclusion of both feature types, spectral and textural parameters. As spectral parameter,

a vegetation index (different for each year, Table 5.2) was applied in the combined feature

set. It was also tested to involve the mean (average) of PC1 as additional spectral feature

as applied in the initial spectral feature set. Nevertheless, it did not improve OA in the

case of the 2008 and the 1999 images, but for the 2005 RGB image the overall accuracy was

enhanced with 4%. For further applications concentrating on CIR imagery the 4 textural

parameters and the vegetation index is proposed.

Table 5.5: Error matrix for the best classification result of Dunaremete, 2008, where 4
textural parameters and vegetation index were applied.

User \ Reference class HP DP W WP RD Wb Unclassified Sum
Hybrid poplar (HP) 5072 0 0 16 0 0 768 5856

Domestic poplar (DP) 16 4864 0 0 0 0 512 5392
Willow (W) 0 0 6857 736 0 0 0 7593

Willow and poplar (WP) 16 256 752 4320 0 0 336 5680
Reed (RD) 0 0 0 0 4574 2 2032 6608

Water bodies (Wb) 0 0 43 0 41 5024 0 5108
Unclassified 16 0 28 48 505 94 9152 9843

Sum 5120 5120 7680 5120 5120 5120 12800
Producer’s acc. 99% 95% 89% 84% 89% 98%

User’s acc. 87% 90% 90% 76% 69% 98%
Overall acc. 87%

Kappa 0.84
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Figure 5.8: Classification results for DR site (2008-1999) with the application of combined
(spectral & textural) feature set with a simple classification scheme based on chessboard-

segments concerning vegetation classes.

5.1.7 Discussion

Vegetation classification based on chessboard-type image segments hinders the advantageous

use of OBIA regarding such segmentation approaches where accurate habitat borders can be

extracted from the high resolution image (e.g., the exact border of water bodies, Figure 5.3).

However, multi-resolution segmentation often results in an over-segmented image, especially

for those woody vegetation classes, where the shadowy areas between single tree crowns or

groups of crowns (e.g., Willow and Willow & poplar habitats) have a great influence on

the segments. In these cases a more compact view by the chessboard segments has been

privileged and confirmed by accuracy measurements (Table 5.6). Figure 5.9 gives an example

for visual comparison of different segmentation and classification results. Nevertheless, a

of combination between the above-mentioned segmentation types is suggested for further

research.
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Figure 5.9: Comparing chessboard and multi-resolution segments from the aerial image
scene of Dunaremete, 2008. Due to the transparency settings colours are brighter in the

image than in the legend.

Table 5.6: Comparing accuracy measures for vegetation classification results based on
different segmentation approaches, for the site of Dunaremete, in 3 distinct years.

Aerial images 2008 (B,G,NIR) 2005 (B,G,R) 1999 (G,R,NIR)
Segmentation type\Acc. measures OA Kappa OA Kappa OA Kappa

Chessboard 87% 0.84 83% 0.80 82% 0.78
Multi-resolution 78% 0.74 75% 0.70 61% 0.52

Although post-classification based change detection analysis was not the focus in the current

study, it would be a reasonable application to the further use of classified vegetation maps

from several years. Therefore, primarily the appropriateness of the applied classification

scheme and the classification accuracies had to be analysed in detail. It was seen that the

overall classification accuracy decreases from 2008 to 1999 (Table 5.4), however, for each

scene OA was higher than 80% in the case of applying combined feature set (including

spectral and textural measures). During the development of the classification scheme, one

can reconsider to merge or split classes. Looking back to the class separability analysis

(Table 5.3) the unseparability of the class pair W-WP is evident, that’s why the merge of

these classes and its effect was experimentally investigated. The results are presented in
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Table 5.7. The most significant effects of these changes are related to the class pairs HP-W

and DP-W (now W means: merged WP and W), with the most significant negative changes

in the JM class separability values. However, it corresponds to the expectations, since W

includes now Poplar species, which is present as well in the class HP. According to that,

Willow and Willow & poplar classes were handled separately in the further applications.

Besides that, in each classification result (for the analysed years) more than 20% of the area

remained unclassified. The question arises, whether important classes were left out at the

definition of the classification scheme or the classification algorithm itself has deficiencies. A

potential extension of the classification scheme is considered in the next section (Section 5.2),

whereas the application of another classification algorithm is described in Sub-section 6.2.5

which is related to the transferability of the classification algorithm as well.

Table 5.7: Jeffries-Matusita class separability analysis in the site of Dunaremete (2008)
with the merge of Willow and Willow & poplar classes (here: W), effecting the separabilities
from Hybrid poplar (HP), Domestic poplar (DP) and Reed (RD) habitats. JM values are
emphasized in bold for those cases where they have been decreased in comparison to the

original values.

Original HP-W HP-W Orig. DP-W DP-W Orig. RD-W RD-W
GLCM STDEV 1.9 1.7 2.0 1.8 2.0 2.0

GLDV ENT 1.6 0.8 1.9 1.2 2.0 1.8
GLCM CONT 1.6 1.0 1.8 1.3 1.9 1.6
GLCM MEAN 1.4 0.8 0.4 0.7 1.1 1.2

mNDVI 2.0 1.9 1.1 0.9 1.0 1.1
Mean of PC1 1.4 0.8 0.4 0.7 1.1 1.2

Mean of G 2.0 1.7 0.3 0.4 1.5 1.4

Classification results for images acquired in different years (2008, 2005, 1999) came from

independent image analyses in terms of sample selection. Due to the fact, that most of the

investigated vegetation units are present in each year with slight changes (stand growth),

it had to be considered whether different-year images can be analysed in a connected way.

Temporal transferability analysis of image classifications is described in Section 6.3.

5.2 Classification scheme

In Sub-section 5.1.2 it has been focused only on certain vegetation habitats (based on a

subjective visual recognition of characteristic vegetation patches using ancillary data), not

aiming at the identification of each vegetation pattern in the test site. Therefore, a part of

the area remained unclassified (in the case of DR, 2008 it was more than 30%). Defining class
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labels for each vegetation pattern present in the image, and hereby, analysing the complete

vegetation cover gives a better understanding about the target site and it is required for the

testing of classification transferability (Chapter 6).

In the ecological community mapping study of Rapp et al. (2005) applied in an open and

forested wetland site in the United States it has been described that the addition of new

classes (i.e., using an extended classification scheme) describes the complexity of local veg-

etation patterns appropriately and improves the vegetation classification result.

5.2.1 Extending the classification scheme

The aerial image from 2008 for the test site of Dunaremete was applied for the investigations

of classification scheme extension. Before the step of sample selection for the complementary

classes, existing classes in the classification scheme had to be reconsidered. Nevertheless,

due to the findings in Sub-section 5.1.7, it was reasonable to apply the originally chosen

classes and complement them with additional ones.

Extending the classification scheme with classes mostly smaller in size than the earlier iden-

tified ones is not straightforward, if the time of image acquisition (2008) and the collection

of ground reference information (botanical field survey, 2004) is significantly different and

in this case uncertainties are expected. In order to complement the classification scheme,

botanical and silvicultural maps and visual interpretation of the image were applied. A hi-

erarchical classification scheme was built with two levels, however, the most significant one

is the “detailed” level (Level II), where classes were directly distinguished based on physiog-

nomical appearance and contrary to that the upper level (Level I) groups these classes by

semantics only. In the study of Johansen et al. (2007) structural vegetation classes followed

the classification scheme of Terrestrial Ecosystem Mapping derived from aerial (analogue

and digital) imagery, which also helped here to find the appropriate classes for Level I.

Complementary classes to the detailed level (Level II) were partly defined using habitat

maps (O10: Vegetation on edges and dams, T1: Arable land from Appendix B, Figure B.2),

using silvicultural inventory (FATI1, 046: Domestic poplar-robinia; 058: Other hardwood,

from Appendix B, Figure B.3) and applying visual interpretation (Road, Bare soil mixed

with grass, Young stand, Shadow). Although the class of Shadow does not build a real

vegetation class, its application was important, since those areas significantly vary from
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other classes and have a common occurrence in the current image. The new hierarchical

classification scheme is presented in Figure 5.10.

Class of water bodies was separated, as it has been described in Sub-section 5.1.1 followed by

the classification of road, both based on irregularly shaped segments after the combination

of quadtree and multi-resolution segmentations with the use of vegetation index (BlueNDVI)

and Brightness (average DN of the bands) values in the classification.

Focusing on the classification of vegetation, class descriptions for the CDBF classification

algorithm were derived based on sample objects (chessboard segments as applied in Sub-

section 5.1.2) using the earlier chosen descriptors (one spectral and 4 textural parameters).

In addition, a small modification was applied to the use of vegetation index. Besides the

formerly chosen BlueNDVI (called as modified NDVI in Table 5.2), GreenNDVI=(NIR-

G)/(NIR+G) was tested, since it is vital from the aspect of further analysis (temporal

classification transferability) to consider transferable indices in case of images with different

band combinations in different years (Table 3.1). That’s why the use of GreenNDVI (with

NIR and G bands) was preferable in comparison to BlueNDVI (with NIR and B bands).

Figure 5.10: Hierarchical classification scheme (Level I, II) applied to the test site of
Dunaremete, 2008
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Figure 5.11: Classification result with the complemented classification scheme by the
CDBF algorithm using GreenNDVI as vegetation index and the earlier chosen textural

parameters, applied to the test site of Dunaremete, 2008

5.2.2 Result & discussion

Classification result is presented in Figure 5.11 by the class description based fuzzy algorithm

with the use of GreenNDVI besides the same textural (GLCM/GLDV) features as applied

previously. Around 17% of the site still remained unclassified, although this was much

less than in case of the originally applied classification scheme (around 30%). The best

overall accuracy was 88% and Kappa index was 0.87 (not including the class of road in

the accuracy calculations because of the 20 m×20 m chessboard-based accuracy assessment

method). These accuracy values are very close to the accuracy measures with the originally

applied simple classification scheme (Table 5.4). The difference between the application

of different vegetation indices (BlueNDVI or GreenNDVI in the combined feature set with

textural measures) is summarized in Table 5.8.

An important issue regarding the classified vegetation habitats is related to classes Domestic

poplar-Robinia and Hybrid poplar. Although, the mixed type of Domestic poplar-Robinia

(DP-R) is only present in one compact site (Appendix B, Figure B.3), in the classification

result other HP stands were labelled as DP-R. It could be established from the silvicultural



Chapter 5. Spectral-textural classification 60

data concerning species related tree ages, that those forest stands have the same age, which

is different from any other stands in the study area. Nevertheless, a statistically significant

analysis for the assessment of age structure could not be carried out on that area because

of the small size of the test site.

Table 5.8: Comparison of accuracy measures based on different vegetation indices in the
combined (spectral & textural) feature set applied in the CDBF algorithm, DR, 2008.

VI in the feature set OA Kappa
BlueNDVI 86% 0.84

GreenNDVI 88% 0.87
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Classification transferability

Supervised classification algorithms as presented in Chapter 5 are always based on ‘local’

training samples directly taken from a given aerial image. However, if (1) all the test sites

(different aerial images) come from the same riparian wetland area and (2) the temporal

analysis is related to the recent years, where small changes are supposed, the synergic use of

the derived parameters based on a principal study site, where training samples are chosen,

is reasonable. The automatic application of a training image-based classification algorithm

to other images can be considered as a potential image analysis method which would speed

up any further investigations.

The idea of classification algorithm transfer has not been completely new in the geoinforma-

tion science. Schöpfer et al. (2005) have described the method of transferring classification

schemes between image scenes (orthophotos) in the spatial dimension, where a classification

scheme developed for a certain site was tested for another scene by importing the scheme

with class descriptions without any adjustments, however, a detailed evaluation of classi-

fication quality after the transferred classification scheme and algorithm has not been the

scope of that research study.

Concerning temporal transferability a recent study of Demir et al. (2013) demonstrated a

novel approach for the detection of land cover changes based on transfer learning, where

the advantage of the already available knowledge on the source image scene is taken into

account for the analysis of the target image from another year.

61



Chapter 6. Classification transferability 62

6.1 Necessity for an objective approach

The comparability of botanical vegetation maps concerning different sites in Hungary has

been an actual problem related to the vegetation database of MÉTA project (Hu.Magyar-

ország Élőhelyeinek Térképi Adatbázisa, Landscape Ecological Vegetation Database & Map

of Hungary, http://www.novenyzetiterkep.hu/), where 200 botanists have documented

the vegetation heritage of the country (Takács and Molnár, 2009). According to that veg-

etation maps cannot be homogeneous due to those subjective factors which are considered

in the mapping procedure by each of the mappers, therefore, the application of an objective

analysis technique, like automated remote sensing image analysis is emerging.

On the other hand involving habitat maps of earlier monitoring into the analysis have gained

significance in habitat mapping in order to better understand landscape dynamics, first of all

the long-term changes and past human land use (Takács and Molnár, 2009). Nevertheless,

the availability of detailed habitat maps from former times is seldom in comparison to the

accessibility of archive aerial imagery, that’s why their analysis offers a potential tool for

the above-mentioned aims. Automated image analysis techniques help to avoid most of the

subjective steps, except for the selection of representative samples needed for a supervised

classification.

In the following, it was aimed at further decreasing human interaction and the related

subjectivity in the image analysis procedure by avoiding sample selection in spatially and

temporally more distant sites and using the known characteristics of common vegetation

patterns in the classification algorithms, which were derived originally from a principal test

site.

6.2 Classification transferability in the spatial dimension

For a spatial analysis of classification transferability certain requirements have to be fulfilled

beforehand. The potential of classification transferability primarily depends on the repre-

sentativeness of the principal site (or master scene) chosen. Furthermore, it is influenced by

the remote sensing imagery applied, the location and size of the whole investigated area and

related to that the variability of vegetation in the target region. Regarding the previously

applied classification algorithm the use of an appropriate classification scheme is vital as

http://www.novenyzetiterkep.hu/
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well. Related to these requirements the selected principal test site (Dunaremete) and the

applied classification scheme are reviewed in the following sub-sections (6.2.1 and 6.2.2).

6.2.1 Adequacy of the principal test site

The study of Takács and Keszei (2004) has stated that the chosen square-shaped site for

the botanical inventory (Appendix B, in Figure B.1) represents well the occurrence and

variability of habitats in the whole Szigetköz riparian wetland. Therefore, it was assumed

that the main study area selected (DR) where the first analyses were carried out based on

the aerial photo (although smaller in size - related to the limited access to aerial images) is

potential as ‘master scene’ for the further investigations. The three test sites, respectively

the aerial images (DK, DR, ASV in Figure 3.3) don’t cover a connected area, however, all

the sites belong to the same riparian wetland and have similar sizes. The images come from

the same aerial image acquisition, where the studied region was overflown on the same day

(06.08.2008) within some hours under the same weather conditions. In summary, it was

reasonable to test the transferability of classification algorithm developed for the principal

site (DR, 2008).

6.2.2 Applied classification scheme

Before applying classification algorithm transfer to the new sites, information on the detailed

vegetation cover (Level II) concerning those areas is required. Since reliable botanical maps

were not available for them, image classification was carried for the aerial images of those

sites by CDBF algorithm (similarly like in the case of DR, Chapter 5) using silvicultural

information and visual interpretation, where OA was higher than 90%. However, having

in mind that afterwards instead of independent analysis, it is going to be tested, whether

similar habitats can be identified in other sites based on the master scene, the detailed

classification scheme(s) (Level II) for the individual test sites were compared in Table 6.1.

Besides that, in Figure 6.1 the three test sites are presented based on Level I (the generalized,

unique classification scheme).
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Figure 6.1: Application of a unique classification scheme based on separate classifications
of the images from 2008, for the three sample sites (DK, DR, ASV).
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Table 6.1: Comparison of two-level classification scheme for the 3 test sites (Dunaremete,
Dunakiliti, Ásványráró, 2008). *Non-ch.: non-characteristic.

DR (2008) DK (2008) ASV (2008)
Level I Level II Level II Level II
1.Water Water bodies(Wb) Wb Wb

2.Bare soil Road Road Road
Bare soil mixed with grass(BSG) BSG BSG

3.Herb/grass Arable land
Reed Reed

Vegetation on edges and dams(VED) VED VED
Non-ch.* grass

4.Shrub Non-ch. shrubby(NS) NS
Young stand(YS) YS

5.Forest Domestic poplar(DP) DP
Hybrid poplar(HP) HP HP

Robinia
Other hardwood

Domestic poplar-robinia
Willow(W) W W

Willow & poplar(WP) WP WP
6.Other Shadow(SH) SH

Nevertheless, since the development of the spatially unique classification scheme for the

3 test sites (Figure 6.1) was solely based on semantics and not on the analysis of image

patterns (textural and spectral characteristics), transferred image classifications could not

be applied.

Based on the overview about the detailed vegetation classification in the other two study

areas (DK, ASV) in comparison to the principal test site (Table 6.1), the occurrence of the

same or similar classes present in DK and ASV test site could be established.

6.2.3 Expected results

It was expected that for the new test sites (DK, 2008 and ASV, 2008) those classes which

have been defined as ‘identical’ in Level II to those from DR, 2008 could be potentially

classified by a certain classification algorithm transfer with appropriate accuracy. These

vegetation classes after Table 6.1 for Dunakiliti site were the following 5 classes (not taking

into account Water bodies): Bare soil mixed with grass (BSG), Vegetation on edges and

dams (VED), Young stand (YS), Hybrid poplar (HP) and W/WP (Willow or Willow &
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poplar). For Ásványráró site the following 6 classes were found as identical: BSG, Reed,

VED, DP, HP and W/WP. It would have been difficult to identify class of Willow or Willow

& poplar separately (as originally defined in Dunaremete), nevertheless, transferability could

be tested by using the merge of those.

Additionally, the optimal case (with a minimum change in the classification algorithm and

the primarily applied classes) would be that the new classes differing from those present in

the original classification scheme (applied to DR) remain unclassified and those vegetation

patches which occurred only in the master scene shall not be used as class labels for any of

the segments in the new test sites. Nevertheless, misclassification was supposed due to the

similarity of several vegetation classes considering the applied spectral and textural features.

6.2.4 Difficulties with the CDBF classification algorithm

Applying a certain supervised classification algorithm from the source image scene to other

scenes is not straightforward.

The following example in Figure 6.2 (right-hand side) represents the first ‘transferred’ clas-

sification result for the site of Dunakiliti (DK), where the original CDBF classification

algorithm (based on DR, 2008) was applied to the chessboard-segmented image scene of

DK after the segmentation and classification of Water bodies. The extended classification

scheme (Figure 5.10) was transferred, however, in the representation only those classes are

found, which were defined as identical in Table 6.1.

On the left side of Figure 6.2 the CDBF classification based on local training samples can

be seen for visual comparison. The classification result with transferred CDBF represents

only those selected classes, which were appropriate for the current scene defined by Ta-

ble 6.1, which means BSG, VED, HP and W/WP (not including Young stand because of

its small extent). A slight modification was taken regarding W and WP habitats (identified

in Dunaremete, see in Figure 5.8), since their separate recognition in the new site (DK) was

difficult, hence, they have been merged.

After visual interpretation of the transferred classification result it can be stated, that

although parts of the Hybrid poplar and Vegetation on edges and dams classes were detected

by the current approach, it was supposed that the noticeable misclassification and omission
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errors refer to the drawback of the certain classifier. Therefore, it was crucial to review the

nature of the applied class description based fuzzy algorithm.

Figure 6.2: Transferred CDBF classification algorithm originally based on DR, 2008 ap-
plied to the test site of Dunakiliti, 2008 (right-hand side) in comparison to the training
sample based classification of DK (left-hand side). The representation of the transferred

CDBF classification includes only the ‘identical’ classes between the two test sites.

During a CDBF classification each target class is characterized by a class description which

means a set of features (parameters) with feature value ranges (as written in Sub-section 4.5.1,

see an example in Figure 4.3). Feature values for those parameters are described by mem-

bership functions (based on training sample sets), where the membership to the class is

described by a statistical curve, which has its start- and endpoint in y = 0 which means the

zero membership to the target class at those x (feature values of the discussed parameter).

In other words it means that class descriptions for target classes consist of ‘closed intervals’

and slight changes in feature value ranges can already cause that certain image segments

cannot be classified to a given class. This happens also due to the settings of class evalu-

ation, i.e., whether a certain image object is classified into a given class according to the
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membership functions per each feature building up a class description. The class evaluation

value determines whether a certain image object can be classified to a specific class and

it is between 0 and 1 (like 0% and 100%). The class evaluation value describes the most

critical membership value from the chosen features in the class description for the current

image segment. It is an important issue regarding the CDBF algorithm, that after default

settings whenever a given feature in the class description has an evaluation value less then

0.1 (10%), the image object remains unclassified. This fact has also a great influence on the

classification result.

6.2.5 Decision tree approach

6.2.5.1 Application to the main test site

Due to the above-described drawback of the applied CDBF classification algorithm another

type of supervised classification algorithm was investigated, firstly based on the same prin-

cipal test site of Dunaremete (2008). Furthermore, the approach was concentrating on the

classification of vegetation habitats, where the classified Water bodies and Road classes were

directly taken from the previous classification result (Figure 5.11).

Decision tree classifier (DT; described in detail in Sub-section 4.5.2) was applied to the

scene based on the earlier chosen spectral and textural (GLCM/GLDV) features concerning

the 20 m×20 m image objects from the chessboard segmentation. Accuracy measures (OA,

Kappa) for the classification result were calculated and compared to the result from the

CDBF algorithm, presented in Table 6.2.

Table 6.2: Comparing accuracy measures for the classification results based on different
classification algorithms (class description based fuzzy: CDBF and decision tree: DT)

regarding the test site of Dunaremete, 2008.

Classification method OA Kappa
CDBF 88% 0.87

Decision tree 90% 0.89

The decision tree approach showed a slightly higher accuracy, however, the difference be-

tween the originally applied CDBF algorithm and DT was not significant: not more than 2%.

Classified maps after the CDBF algorithm and the DT classifier are presented in Figure 6.3.
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Figure 6.3: Comparison of classification results based on different supervised classification
algorithms, applied to the test site of Dunaremete, 2008.
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With the application of the DT approach no unclassified area remained, whilst in case of

the CDBF classification approximately 17% of the test site was still unlabelled (Figure 6.3).

Another advantage of the DT algorithm is the computation of a tree structure where the

target classes appear at the end leaves and the decision rules with the applied parameters

and their ‘separating’ values in the internal nodes (explained in detail in Sub-section 4.5.2),

which can be directly tested for other study sites.

The current decision tree computed from the training sample set and applied to the site of

Dunaremete (2008) is presented in Figure 6.4.

Since the decision tree classification algorithm gave promising results for the principal test

site regarding classification accuracy and the presence of no unclassified objects, its appli-

cation for spatial transferability was tested in the following Sub-section 6.2.5.2.

Figure 6.4: Structure of the decision tree computed in eCognition Developer based on
the test site of Dunaremete (aerial image scene from 2008) with the extended classification
scheme. Class abbreviations at the end leaves: SH:Shadow, VED:Vegetation on edges
and dams, AL:Arable land, BSG:Bare soil mixed with grass, R:Reed, DP:Domestic poplar,
WP:Willow & poplar, W:Willow, HP:Hybrid poplar, OH:Other hardwood, YS:Young stand,

DP-R:Domestic poplar-robinia.

6.2.5.2 Analysis of classification algorithm transfer

For the testing of vegetation classification transferability decision tree algorithm defined

for DR site was applied to the chessboard-segmented images (site of DK, ASV) after the
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separation of Water bodies and the classification result was compared with a reference sample

set defined by visual interpretation and silvicultural information for accuracy assessment.

A general flowchart regarding the here applied methods is presented in Figure 6.5.

Figure 6.5: Methods applied for the analysis of decision tree transfer from the training
site to the target sites

Application to the site of Dunakiliti Due to the difficulty of visual interpretation and

the poor overall accuracy of the classified results based on the original classification scheme

(originated from the site of Dunaremete), the above-presented decision tree (Figure 6.4)

was slightly changed setting the non-representative classes (in DK) at the end leaves to ‘Un-

classified’. From the representative classes (summarized in Sub-section 6.2.3) further three
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classes (BSG, W/WP and YS) were excluded from the current analysis due to misclassifica-

tion issues and besides, that they are smaller than 150 000 m2 (calculated from the sample

based classification).

The result of the adapted decision tree algorithm is found in Figure 6.6 (right-hand side),

where the overall accuracy is 91%. Into the accuraccy assessment besides reference sam-

ples for the target vegetation classes, samples for Water bodies and Unclassified area (as

background) were included as well. Confusion matrix with the selected classes is repre-

sented in Table 6.3. In the case of HP class both accuracies (producer’s and user’s) were

higher than 85%, which showed its potential for further investigations. Nevertheless, since

the producer’s accuracy for VED was under 60% its automatic classification could not be

considered as acceptable for further analysis.

Figure 6.6: Classification result after transferring DT algorithm to the scene of Dunakiliti
(2008), representing only the identical classes with a significant occurrence (size).
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Table 6.3: Error matrix for the classification of selected classes in the site of Dunakiliti
(aerial image scene from 2008) based on the application of transferred decision tree.

User \ Reference class Wb Uncl. VED HP Sum
Water bodies (Wb) 5120 2 0 0 5122
Unclassified (Uncl.) 0 23806 2304 1024 27134

Vegetation on edges and dams (VED) 0 0 2816 0 2816
Hybrid poplar (HP) 0 256 0 6656 6912

Sum 5120 24064 5120 7680
Producer’ s acc. 100% 55% 87%

User’s acc. 100% 100% 96%
Overall acc. 91%

Kappa 0.85

Application to the site of Ásványráró In case of the ASV site, the following three

vegetation classes: Reed, Hybrid poplar (HP) and Willow/Willow & poplar (W/WP, consid-

ered as a merged class) were analysed with the transferred decision tree, since they appeared

similar to those classes present in the master scene of DR site (after Table 6.1) and besides,

they have a significant size (>150 000 m2, calculated based on silvicultural information and

sample based classification result).

Using the analogy of the application to the site of Dunakiliti, end nodes in the decision tree

(Figure 6.4) were only taken into account for the recently defined three target classes (class

of Water bodies was segmented and classified beforehand). For the excluded classes end

leaves were set to ‘Unclassified’.

After accuracy calculations with the selected reference samples OA value (61%) showed a

poor agreement for the classification results, mainly caused by the omission error of Reed

class and the low user’s accuracy for W/WP. In the case of Hybrid poplar habitat although

both accuracy values (producer’s: 71%, user’s accuracy: 75%) were higher than the OA,

they were much lower than the same values in case of Dunakiliti. These results concerning

low accuracies are discussed in the following Sub-section 6.2.6.

6.2.6 Results and discussion

The above-described findings showed that transferring DR-site-based decision tree algorithm

gave promising results for the detection and classification of Hybrid poplar class in the study
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site of Dunakiliti. However, in the test area of Ásványráró the same approach was less reliable

based on lower accuracy results.

Regarding the user-defined Hybrid poplar class in the different test areas, pattern differences

could be detected by visual comparison. However, for an objective judgement the review of

the originally applied silvicultural reference data with Forest Stand Type (FST) information

(Hu.FATI1, Appendix B, Figure B.3) was crucial.

In the ASV site the user-defined Hybrid poplar class is described by four FSTs: Hybrid

poplar (FATI1:059), Domestic poplar-Hybrid poplar (DP-HP, FATI1:060), Other wood-

Hybrid poplar (OW-HP, FATI1:062) and Hybrid poplar-Domestic poplar (HP-DP, FATI1:

067), where from the listed stands around 40% belongs to the Hybrid poplar FST. Besides,

pattern variation seems to be high for the Hybrid poplar FST, which could be explained by

the age structure. But since tree age information from the National Forest Inventory does

not refer to those stands represented in Figure B.3, its detailed analysis was not involved

in the current study. For the principle test site (DR) around 50% of the occurring FSTs

belongs to the Hybrid poplar FST, which was also taken into account for the earlier training

sample selection regarding the user-defined HP class. It means that for the decision tree

computation only 50% of the HP-class-related training samples were chosen from the HP

FST, whilst the other samples were HP stands mixed with other types. In contrast, for the

test site of Dunakiliti Hybrid poplar FST is represented by approximately 80%.

According to that the application of complementary analysis with the change of training

and target sites (mentioned-above in Figure 6.5) was essential. Therefore, new decision

trees had to be computed for DK and ASV sites, as training sites and in the transfer

analysis to the other study areas the focus was put on the classification of Hybrid poplar

class (based on the findings in Sub-section 6.2.5.2), applied as an ‘active’ end leaf in the

DTs. Small modification was done concerning the feature set applied in the decision tree

computations, where BlueNDVI or GreenNDVI was tested as vegetation index, besides the

unchanged textural parameters. For accuracy assessment a reference set of Water bodies,

Hybrid poplar and ‘Background’ classes were used for each study site separately, regarding

those cases where the transferred DTs have been applied. Producer’s and user’s accuracies

concentrating on the Hybrid poplar class are summarized in Table 6.4. Concerning the

training site as source for the DT computation, OA values were also calculated for those test
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areas and are presented in Table 6.4. Best results came from the transfer of the DK-training-

site-based decision tree with the application of BlueNDVI as vegetation index (Figure 6.7).

Based on the above-described complementary analysis it is concluded that the detection

and classification of the user-defined Hybrid poplar class with transferred algorithm(s) is

the most reliable (PA and UA measures are ≥ 90%), when the training samples only include

the Hybrid poplar Forest Stand Type. In the current study it means the application of DK-

training-site-based decision tree to the target sites (DR, ASV), presented in Figure 6.8. From

the aspect of further analysis the use of BlueNDVI in the feature set for DT computation

is decisive for the detection of Hybrid poplar stands.

Figure 6.7: DK-training-site-based decision tree. New vegetation classes (not used in the
site of DR) are NG: Non-characteristic grass, NS: Non-characteristic shrubby, R: Robinia.
However, except for Hybrid poplar class all the others are set to Unclassified in the DT-

transfer approach.

Furthermore, focusing on the detection of a single vegetation habitat (Hybrid poplar stands

in the current study), it was reasonable to complement the analysis of the original DT

computed for DK, 2008 (Figure 6.7) with the computation of a new decision tree, where

target classes were Hybrid poplar and Background (training samples from every other type

of vegetation classes were merged into the class of Background). It means that Hybrid poplar
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was exclusively separated by the computed decision tree without further modifications in

the end leaves regarding the settings of irrelevant classes. The new decision tree (Figure 6.9)

included only the BlueNDVI feature, although each of the 4 textural parameters were chosen

in the initial parameter set for decision tree computation. Accuracy measures (Table 6.5)

showed that PA and UA were ≥ 87% in each case concerning the training site (DK) and the

target sites (DR and ASV). Although the application of the original decision tree algorithm

generally gave a better classification performance for the detection of Hybrid poplar stands,

the recent application is considerable for further use, since it provides a faster analysis

method.

Figure 6.8: Transferring the DK-training-site-based decision tree to the other test sites
(Dunaremete and Ásványráró), where the DT shown in Figure 6.7 is applied.
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Table 6.4: Accuracy measures for the classification of user-defined Hybrid poplar class,
based on different decision tree transfers. The column VI applied means the certain veg-
etation index (VI) which was used in the feature set for DT computation. PA stands for

producer’s, UA for user’s accuracy. Ts: training site, Ns: new site.

Training site VI applied New site PA(Ns) UA(Ns) PA(Ts) UA(Ts) OA(Ts)
Dunaremete G NDVI DK site 87% 96% 73% 96% 90%

B NDVI 80% 100% 73% 92% 84%
G NDVI ASV site 71% 75%
B NDVI 71% 61%

Dunakiliti G NDVI DR site 15% 76% 87% 100% 88%
B NDVI 94% 95% 90% 100% 91%
G NDVI ASV site 97% 95%
B NDVI 97% 97%

Ásványráró G NDVI DK site 83% 93% 97% 92% 89%
B NDVI 83% 96% 97% 97% 90%
G NDVI DR site 5% 100%
B NDVI 14% 98%

Table 6.5: Comparison of accuracies for the application of modified decision tree based on
the site of Dunakiliti, applied to the 3 different test sites. Modification means the change

of the classification scheme, focusing on the separation of Hybrid poplar stands only.

Training site for DT PA UA

Dunakiliti 93% 88%

Target sites for DT

Dunaremete 94% 87%

Ásványráró 89% 94%

In summary, if training samples are taken only from those forest stands where the FST

is Hybrid poplar, not mixed by other type of wood, the training-site-based decision tree

classifier is applicable for the classification of the generally meant (user-defined) Hybrid

poplar stands (also including the mixed FST, e.g., Domestic poplar-Hybrid poplar). Besides,

the application of BlueNDVI (with NIR and B bands) instead of GreenNDVI (with NIR and

G bands) applied to the NIR-G-B imagery (2008) in the decision tree approach is essential

for the appropriate detection of Hybrid poplar stands in other images by the transferred

method.
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Figure 6.9: Modified decision tree focusing on the separation of Hybrid poplar based on
the site of Dunakiliti, 2008.

6.3 Classification transferability in the temporal dimension

In Section 5.1 aerial image-based vegetation classifications with the ‘simple’ classification

scheme have been presented for a concrete site for three different dates independently, where

during this time period (1999-2008) vegetation cover did not change rapidly in general. It

means that most of the classes analysed for the different dates separately are detectable in

each year. This fact provided the basis for the following attempt, where it was aimed at

transferring the classification algorithm defined for the most recent year (2008) to the former

time(s), concentrating on the test site of Dunaremete. Applying such a method a further

step can be taken towards an objective automated analysis in time, where the advantage of

avoiding the time consuming and possibly inconsistent training sample selection is vital.

Since it was proved in Section 5.1 that the combined use of textural and spectral parameters

give the best classification results, it was important that the analysed images have similar

spectral resolution for the appropriate transfer of vegetation index. Therefore, it was sup-

posed that the application on the 2005 (RGB) image without vegetation index would be

difficult. It was assumed that for those aerial image scenes, where the spectral and geo-

metric resolutions are the same or very similar and the image acquisition time interval is

not longer than 10 years certain vegetation patches can be detected and mapped with ap-

propriate accuracies. It was supposed that the direct application of spectral characteristics

(e.g., vegetation index) plays an essential role in the separation of water and vegetation

(Sub-section 6.3.1). Nevertheless, it was described in detail after that, whether the use of

vegetation index is needed for the transferred vegetation classification algorithms.
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6.3.1 Separation of water bodies

The classification of water bodies by vegetation indices after segmentation was applied

independently to the images (2008, 2005 and 1999) in Sub-section 5.1.1. In each case a

different index was used due to the fact of altering band combinations by different image

acquisitions. Nevertheless, by changing the index applied to 2008 to (NIR-G)/(NIR+G)

(GreenNDVI, also mentioned before in Sub-section 5.2.1) the same index can be applied to

the image of 1999 in an automated way. Thus, a combination of GreenNDVI and Brightness

(average DN of the three bands) was applied in the class description (Figure 6.10) for the

unique classification of segments into the class of water bodies.

Besides class of water bodies, class of road was classified beforehand applied to segments

from the multi-resolution segmentation, since its separation was simply based on the Green-

NDVI and Brightness values similarly as applied in Sub-section 5.2.1. It helps to avoid the

potentially misclassified image objects later, along the road. Nevertheless, class of road is

not represented in some of the figures because of its small extent.

Afterwards in the main part of the analysis class of water bodies and road were handled as

already known (masked) and they were not included in the investigations.

Figure 6.10: Class description of water bodies applied to the 2008 and 1999 image scene
in the site of Dunaremete. Feature value range in the second and(min) expression (which

means both have to be fulfilled in the same time) are 20≥ Brightness ≤90 and
-0.25≥ GreenNDVI ≤0.1.
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6.3.2 Transfer of classification algorithms

Transferring the class description based fuzzy algorithm lead to non-appropriate classifica-

tion results (Figure 6.11, b), where for an adequate comparison with the occurring vegetation

classes Figure 6.11, (a) represents the original CDBF-based classification result for the scene

of 1999 (Dunaremete) with the simple classification scheme. Although the same or similar

vegetation classes were supposed to be found in 1999, around the half of the site (52%)

remained unclassified and the class of Hybrid poplar is completely missing in the classified

scene.

Figure 6.11: Classification results after transferring unchanged CDBF and DT algo-
rithms with simple and slightly modified classification schemes to the former (1999) scene

of Dunaremete.

Dealing with the transferability in the spatial dimension, it has been discussed in Sub-

section 6.2.5 that the decision tree approach is privileged to apply, therefore, it was also

adopted to the analysis of temporal classification transferability. Firstly the concrete deci-

sion tree (Figure 6.12) had to be computed based on the training scene (DR, 2008), where
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the simple classification scheme was modified by the extension of Reed class to Low vege-

tation (Figure 6.11, c). The 2008 scene-based decision tree was applied to the image object

level of unclassified chessboard segments and gave the following classification result in Fig-

ure 6.11, (d). Hybrid poplar stands are also missing in the DT-based classification, and the

most occurring woody vegetation class is willow (around 40% of the site), including those

stands as well, which were supposed to be Hybrid poplar. In contrast, the classification of

Low vegetation class visually seems to be promising, therefore, producer’s and user’s accu-

racies were calculated and are summarized in Table 6.6, also including PA and UA for the

DT-classification of the 2008 image.

Figure 6.12: Structure of the decision tree with the simple classification scheme (slightly
modified) based on the scene of DR, 2008 and latter applied to the scene of 1999.

Table 6.6: Producer’s and user’s accuracy for the class of Low vegetation in the decision
tree-transfer for the original image scene (2008) as training image and for 1999 as target

image scene.

Image Role in the DT computation PA UA
Dunaremete (2008) Training scene 93% 86%
Dunaremete (1999) Target scene 72% 86%

Findings from Section 6.2 were confirmed by the above-described examples for temporal

classification transferability, stating that transferring decision tree-based algorithms can be

feasible for the classification of certain vegetation class(es) (here: Low vegetation). Nev-

ertheless, further improvements had to be applied in order to get appropriate accuracies

(PA was under 75% for Low vegetation in DR, 1999, presented in Table 6.6). With the
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reclassification of Willow and Willow & poplar classes into ‘general forest areas’ (woody

vegetation) the analysis would be applicable for the separation of grass (low) and woody

(high) vegetation, described in Section 6.4.

Considering the original class labels, one can observe that class of Hybrid poplar could not

be detected with the transferred decision tree in the 1999 image, which could mean the

presence of vegetation structural (pattern) differences in the stands for the two years (1999

and 2008) and besides, a higher level of similarity is supposed between the class of HP

(1999) and the class of Willow (1999) based on the classification result from DT-transfer.

The lower level of textural difference for HP-W class pair in 1999 was also confirmed by

the Jeffries-Matusita class separability values (Appendix C). Nevertheless, separability was

provided there by vegetation index between those classes for the concrete scenes (DR 1999,

2008).

For a further analysis of training image-based classification, it was essential to compare

vegetation patches (classes) in the source (training) and target image scene and evaluate

the appropriateness of the applied spectral and textural parameters used in the classification.

It is described in Sub-section 6.3.3.

6.3.3 Class separability analysis

This sub-section concentrates on the analysis of the applied spectral and textural parameters

defined for different aerial image scenes (2008 and 1999) applying Jeffries-Matusita class sep-

arability analysis with training sample sets. It was supposed that despite different spectral

band compositions (2008: B,G,NIR; 1999: G,R,NIR) but with the same geometric resolu-

tion (both with 1.25 m/pixel) certain parameters applied before can be compared between

those scenes. Firstly (Sub-section 6.3.3.1) the applied parameters are analysed for the class

of Low vegetation, which was expected as a vegetation class with similar characteristics, de-

tectable by the transferred decision tree (classification is found in Figure 6.11, d). Secondly

(Sub-section 6.3.3.2) vegetation structural differences are going to be demonstrated by the

same analysis method.
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6.3.3.1 Detecting a stable parameter for temporal vegetation analysis

Initially, it was assumed that vegetation pattern similarities and differences in distinct years

are not significantly influenced by the different characteristics of the applied CIR imagery

(2008, 1999). Therefore, it was supposed that certain parameters exist, which characterize

similar vegetation classes in different years and are not independent descriptors for the single

years. If this hypothesis is true, it means that temporally stable parameters do exist, which

can be used to detect similar vegetation patches. Beyond that, it was supposed that textural

parameters could show a more stable character in comparison to spectral parameters, e.g.,

the here applied vegetation index. In order to prove that, a detailed objective comparison

was worked out for the target classes occurring in each image scene, where the application

of the JM separability analysis based on training samples from each scene provided an

appropriate method.

Furthermore, a stable parameter (descriptor) for a concrete class means, that it describes a

certain class similarly in the compared scenes by utilising similar feature value ranges (low

separability by JM analysis) and besides, it can be proved that the analysed feature value

range is significantly different from the other (vegetation) classes (high separabilities by JM

analysis for single years and for different years). Fulfilling these conditions, the analysed

parameter is proved as a stable descriptor for temporal vegetation analysis. Generally, a

stable parameter is supposed to be well applicable for the automated detection of similar

vegetation patterns in different years and can detect significant vegetation pattern differ-

ences as well. The analysis steps required for the determination of stable parameter(s) are

summarized in Figure 6.13.

From the simple classification scheme (applied originally for the separate classification of

image scenes, Figure 5.8) the class of Reed (respectively its training sample set for each

scene) was chosen for the JM separability analysis, where it was supposed to be similar in

the different years. Initially it was essential to review, whether the applied parameters were

significant for class separation regarding vegetation class pairs with Reed in each scene sepa-

rately. Therefore, the JM separability values were calculated and are presented in Table 6.7.

It can be observed that textural parameters provide clear separabilities in the cases of W-R

and WP-R class pairs (both years) contrary to the vegetation index (GreenNDVI).
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Figure 6.13: Analysis steps required for stable parameter assessment. Examples for the
analysis of condition 1) in Table 6.7, for condition 2) in Table 6.8, for condition 3) in

Table 6.9 can be found.

Table 6.7: Jeffries-Matusita separability values for class-pairs with Reed concerning the
site of Dunaremete for 1999 and for 2008. The selected textural and spectral parameters

are related to the former results in Chapter 5.1.4.

HP-R W-R WP-R
1999 2008 1999 2008 1999 2008

GLDV ENT 1.8 1.0 2.0 2.0 1.6 1.8
GLCM STDEV 1.9 1.8 2.0 2.0 1.8 2.0
GLCM CONT 1.9 1.0 2.0 1.9 1.7 1.8
GLCM MEAN 1.7 2.0 0.3 1.1 0.9 1.4

GreenNDVI 2.0 2.0 0.3 1.0 1.2 1.4

Another important remark is the extreme change (decrease in JM separabilities from 1999

to 2008) regarding two textural parameters for the class pair of HP-R. Nevertheless, by
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GLCM STDEV texture feature and by GreenNDVI the mentioned class pair is separable

with JM≥1.8.

Testing of similarities and separabilities was done in two steps, firstly it had to be analysed,

whether the samples taken for Reed (in the scene of 2008 and 1999) were identical (Table 6.8),

secondly whether samples taken for Reed in 2008 were clearly separable from other target

vegetation classes defined in the scene of 1999 (Table 6.9).

Table 6.8: Analysing similarity for the class of Reed defined in different image scenes (DR
1999, 2008) by the earlier chosen features applying the Jeffries-Matusita class separability

analysis, where G NDVI means GreenNDVI.

Reed from 2008
From 1999 G NDVI GLCM MEAN GLDV ENT GLCM STDEV GLCM CONT

Reed 1.21 0.09 0.85 1.17 0.91

In Table 6.8 all the JM values are under 1.3, which means the similarity of classes as it

was required. Nevertheless, in Table 6.9 the required separabilities only exist for the class

of Reed (2008) and the forest sites (1999) with GLDV ENT, GLCM STDEV and GLCM

CONT textural parameters. Since the expected separabilities could not be detected for

GreenNDVI and GLCM mean features in the cases of Reed-HP, Reed-W and Reed-WP,

JM values for these parameters were not calculated for other class pairs of Reed and non-

forest sites. According to that vegetation index (GreenNDVI) and GLCM mean were found

as inappropriate descriptors for a temporal comparison. Although, GLCM mean has been

listed as one of the textural parameters, which was applied before, it was correlated with

the mean of PC1, that’s why it is considered here as a spectral and not a ‘real’ textural

feature.

From the three appropriate textural parameters derived from Table 6.8 and from Table 6.9

GLDV entropy showed the smallest JM value (best value for similarity) for Reed classes

(1999-2008), but considering class separations for the different years (Table 6.7) it had a low

separability value (1.0) for HP-R in 2008. Taking into account all the three tables presented

above the best descriptor is GLCM STDEV, called as stable parameter later.

Since other non-forest sites (Arable land, Vegetation on edges and dams, Smooth and Rough

fallow land, Shadow) defined in the scene of 1999 were generally not separable from Reed

(2008) by the mentioned textural parameters, instead of Reed the extended class of Low

vegetation (defined in Sub-section 6.3.2) was suggested for further analysis.
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Table 6.9: Analysing separability between the class of Reed (2008) and other vegetation
classes from the former scene (1999) by the earlier chosen features applying the Jeffries-
Matusita class separability analysis for the site of Dunaremete. HP: Hybrid poplar; W:
Willow; WP: Willow & poplar; ArLa: Arable Land; VED: Vegetation on edges and dams;

Smooth FL: Smooth fallow land; Rough FL: Rough fallow land.

Reed from 2008
From 1999 G NDVI GLCM MEAN GLDV ENT GLCM STDEV GLCM CONT

HP 0.44 1.87 2.00 2.00 2.00
W 0.96 0.53 2.00 2.00 2.00

WP 0.01 1.18 2.00 1.99 1.94
ArLa 1.00 1.32 1.06
VED 1.84 0.33 1.42

Smooth FL 0.15 0.11 0.21
Rough FL 1.59 1.83 1.55

Shadow 1.00 1.03 0.61

6.3.3.2 Detecting vegetation with structural differences

The above-established stable descriptor (GLCM standard deviation) was further applied

to the analysis of other vegetation classes, firstly to the class of Hybrid poplar. Analysis

steps presented in Figure 6.13 were followed, since those conditions are applicable for the

detection of similar vegetation patterns.

Firstly class pair separabilities regarding 1999 and 2008 separately are presented in Ta-

ble 6.10, where the lower JM values for the class pair HP-WP was reasonable (since Hybrid

poplar species are present in both classes), but changes concerning the poor separability for

HP-W in 1999 in comparison to the high value (1.9) in 2008 was considerable.

Table 6.10: Jeffries-Matusita separability values for class pairs with Hybrid poplar con-
cerning the site of Dunaremete for 1999 and for 2008.

HP-R HP-W HP-WP
1999 2008 1999 2008 1999 2008

GLCM STDEV 1.9 1.8 1.1 1.9 0.7 1.6

Analysing the second condition where Hybrid poplar stands from different years were com-

pared by GLCM standard deviation the JM separability value equals 2.00, which means a

concrete separability between the analysed sample sets. Without further investigations it

proved that the analysed vegetation classes (defined and expected as Hybrid poplar) are not

similar and significant vegetation pattern changes occurred. These changes are reasonable,
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since vegetation structure could significantly change due to the growth of the stands (or the

settlement of new stands after harvesting).

Regarding the classes of Willow and Willow & poplar in the temporal comparability analysis

(second condition in Figure 6.13) JM value is 1.39 for both cases, which means the similarity

of those vegetation patterns for the different years, however, their detection could not be

straightforward (similarities have been discussed between HP-W and HP-WP classes in

Table 6.10), also showed by the analysis of the third condition, where clear separability

values would have been expected (Table 6.11 and in Table 6.12).

Table 6.11: Analysing the separability between class of Willow (DR, 2008) and other
vegetation classes from the former scene (1999) by GLCM STDEV applying the Jeffries-

Matusita class separability analysis.

Willow from 2008
From 1999 GLCM STDEV

Reed 1.56
Hybrid poplar 0.27

Willow & poplar 0.86

Table 6.12: Analysing the separability between class of Willow & poplar (DR, 2008)
and other vegetation classes from the former scene (1999) by GLCM STDEV applying the

Jeffries-Matusita class separability analysis.

Willow & poplar from 2008
From 1999 GLCM STDEV

Reed 0.94
Hybrid poplar 1.29

Willow 1.85

6.3.4 Transferring a generalized classification scheme

After the findings in Sub-section 6.3.2 and Sub-section 6.3.3 a generalized classification of

grass (low vegetation) and forest cover (high vegetation) was suggested for an appropriate

classification algorithm transfer in the temporal dimension.

After an earlier presented decision tree with the modified classification scheme (computed for

the 2008 image, Figure 6.12), where low vegetation was already defined, GreenNDVI (called

mNDVI there) was a significant parameter for the separation of vegetation classes. Referring

to the separation of Hybrid poplar and Reed GreenNDVI was the only descriptor among

the analysed features which provided 100% separability by the JM value (2.0) for the image
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scenes separately (Table 6.7). However, in the temporal comparison it could not be defined

as a stable parameter in contrast to GLCM STDEV. For these reasons, decision trees based

on the 2008 image (Dunaremete) were computed on the basis of reclassified training sample

sets for HL (high vegetation) and LV (low vegetation) classes with the GLCM standard

deviation feature in addition with and without GreenNDVI. The structures of the computed

decision trees are found in Figure 6.14 and in Figure 6.15 with the indication of the main

nodes, since in some of the end leaves in the originally computed trees only a few number

of image segments were found.

Figure 6.14: Structure of the decision tree (DT1 later) for the separation of high and
low vegetation based on the scene of DR, 2008, applying GLCM STDEV and GreenNDVI

(mNDVI) in the feature set. LV: Low vegetation, HV: High vegetation class.

Classification results with the generalized classification scheme are presented parallel in

Figure 6.16. For appropriate accuracy assessment reference square image objects were chosen

carefully, not overlaid with the originally chosen training segments (70 square samples for

LV and 170 samples for HV, not including water bodies and road). With the use of GLCM

STDEV and GreenNDVI in the feature set for decision tree computation classification results

reached a high agreement to the reference sample set (OA: 98%, Kappa: 0.95 for 2008;

OA: 99%, Kappa: 0.98 for 1999). Excluding vegetation index resulted in slightly worse

results with 97% for OA and 0.91 for the Kappa value concerning the training image (2008),

however, regarding the DT-transfer to the target scene of 1999 accuracy values decreased
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significantly (OA: 79%, Kappa: 0.57). Therefore, the application of both features, GLCM

STDEV and GreenNDVI in the feature set for DT computation (applied to the 2008, NIR-

G-B image) was selected for further analysis.

Since GreenNDVI was found as a non-significant descriptor and GLCM STDEV as a signif-

icant one in the temporal analysis, it was assumed and verified that ignoring the decision

node of mNDVI in Figure 6.14 (DT1) and applying only the marked GLCM STDEV (with

the value of 23.19) to the 1999 image gave the same classification result as applying the

original tree (Figure 6.14).

Figure 6.15: Structure of the decision tree (DT2 later) for the separation of high and
low vegetation based on the scene of DR, 2008, applying exclusively GLCM STDEV in the

feature set. LV: Low vegetation, HV: High vegetation class.

Furthermore, a backward analysis of classification transferability was tested based on the

1999 image. Therefore, the sample based classification (decision tree) with the generalized

classification scheme was computed for that image. New decision tree calculations were

based on the GLCM STDEV textural parameter with and without GreenNDVI, where the

computed trees gave the same structure, not including vegetation index as a decision node.

The new DT describes that if GLCM STDEV<25.04 then the image segments are classified

as low vegetation, else they get the class label of high vegetation. Applying this decision tree

classification results provided a 100% agreement and it means that using GLCM STDEV

only was sufficient for the appropriate separation of high and low vegetation classes in that

aerial image (1999, NIR-R-G). Nevertheless, since VI was necessary for appropriate class
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separabilities in the scene of 2008, decision tree computed for the former (1999) scene (not

including VI), could not perform well applied to 2008, giving an OA of 65%.

Figure 6.16: Comparison of decision tree-based classification results with a generalized
classification scheme using different initial feature sets for DT computation, applied for

2008 and 1999 in the site of Dunaremete.

6.3.5 Results

In summary, it was proved that a certain textural parameter (GLCM standard deviation)

in contrast to spectral descriptors (e.g., vegetation index) is a significant descriptor for

temporal vegetation analysis. GLCM standard deviation as a stable (reliable) parameter

in the temporal investigations is suggested for further use in similarity/difference analysis

of vegetation patterns in the different year images based on training sample sets. The

classification algorithm of decision tree computed for the scene of 2008 with GLCM STDEV

and GreenNDVI gave promising results for high and low vegetation separation and it was

also applicable for the earlier image of 1999 by DT-transfer. A slight change in the decision

tree by ignoring the initial node with GreenNDVI in DT1 (Figure 6.14) and the use of



Chapter 6. Classification transferability 91

GLCM STDEV only was sufficient for the classification of the 1999 aerial image. Decision

tree computed separately (based on training samples) for the 1999 image proved also the

appropriateness of GLCM STDEV as a single descriptor in the classification tree. Beyond

that, based on the example of the 1999 image, GLCM STDEV can be proposed as a unique

feature for high and low vegetation separation for images with NIR-R-G spectral band

combination. Nevertheless, the decision tree computed from 1999 could not be transferred

to 2008, respectively the transfer of decision tree backwards (from 1999 to 2008) could not

work in the analysed images due to the need for GreenNDVI concerning the class separability

of HP-RD in 2008.

6.4 Spatio-temporal classification transferability

We have seen that transferring a concrete classification algorithm from one test site to an-

other (Section 6.2) or from one time to an earlier image (Section 6.3) is not straightforward,

however, under certain conditions (e.g., with the application of appropriate classification

algorithm, classification scheme, training site) the classification gave promising results.

In the following as a further step towards an automated aerial image analysis, it was con-

sidered, whether the spatial or temporal transferability results were applicable for a spatio-

temporal extension. Since it was not feasible based on transferable classification algorithms

to conduct detailed vegetation/forest mapping for aerial images with 9-years difference due

to forest structural differences (Section 6.3), the detection of Hybrid poplar stands (analysed

in Sub-section 6.2.6) could not be temporally extended by transferred algorithms. Instead

of that, based on the decision tree classification and the generalized classification scheme

applied to the temporal classification transferability in Sub-section 6.3.4, the applicability

of the same algorithm was considered for spatial transferability.

Firstly it was assumed that after the separation of water bodies the ‘multi-resolution-

segmented’ image (Figure 5.3) could be analysed for classification parallel to the chessboard

segment-based method. This consideration was based on the ‘simplified’ land cover analysis,

where grass cover (low vegetation) has significantly smoother texture in contrast to forest

cover with higher textural variation for the MR-segments, which was not going to be split

into further complex habitats.
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Since from the previous section the firstly applied decision tree algorithm (DT1, Figure 6.14)

gave the best classification result for the temporal transferability, firstly it was tested based

on MR-segments for the study site of Dunaremete in 2008 and 1999, where the accuracies

were slightly lower than by the chessboard-based application (summarized in Table 6.13).

For the spatial extension classification algorithm (DT1) was transferred to the other test site

(Dunakiliti, 2008) based on the two segmentation types, where the classification performance

(Figure 6.17) showed lower accuracies (Table 6.13), however, still acceptable for further

investigations.

Table 6.13: Accuracy assessment of the classification results based on the same decision-
tree approach (DT1 from Figure 6.14), applied to three different image scenes. Besides, the

performance of different segmentation methods for classification were analysed.

DT1 Dunaremete - 2008 Dunaremete - 1999 Dunakiliti - 2008
MR Chessboard MR Chessboard MR Chessboard

OA 95% 98% 94% 99% 87% 92%
Kappa 0.87 0.95 0.88 0.98 0.74 0.83

Considering the results from the accuracy assessment method it is essential to emphasize that

the chessboard-based reference objects (reference samples) could not measure the accuracy of

vegetation class borders, which was clearly improved by the multi-resolution-segmentation-

based analysis. Therefore, it is foreseen in the future research to apply additional accuracy

calculations for the assessment of objective accuracy measures.

It was achieved to separate forested and non-forested wetlands, however, the earlier proposed

generalized classification scheme from the two-level scheme (Sub-section 6.2.2, Figure 6.1)

could not be applied, mainly caused by the rare representation of bare soil and the often

mixed herb/grass and shrub categories. It is supposed that a larger principal test site could

enhance the training site-based decision tree for a better classification performance in other

areas. However, for an automated image analysis a spatially and temporally transferable

decision tree has and will have its limitations due to the differences in the applied imagery.
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Figure 6.17: Transferred decision tree-based (DT1 from Figure 6.14) classification results
with a generalized classification scheme based on different segmentations, applied to the

site of Dunakiliti (2008).



Chapter 7

Summary

Automated image analysis techniques in general went through a rapid development in the

recent years due to the necessity for evaluating an increasing amount of remotely sensed data

in a feasible manner. With those methods the interpretation of available high resolution

(HR) aerial imagery can be automated and the analysis results enhance the assessment

of vulnerable riparian wetland environments, where botanical and silvicultural inventories

couldn’t take place regularly and are subjective due to the surveyor’s experience.

In the current research supervised vegetation habitat classification was worked out for se-

lected test sites in the Szigetköz Danubian floodplain (Hungary) based on HR aerial imagery.

Firstly different parameter sets (spectral and/or textural) were analysed for classification

performance on chessboard-segmented images (with 20×20 m segments) from three differ-

ent years focusing on the same test site, based on a user-defined classification scheme after

botanical and silvicultural inventories. Best classification accuracies were reached with the

application of a combined set of vegetation index and four textural parameters, calculated

from the Grey Level Co-occurrence Matrix, as input for the class description based fuzzy

algorithm. The most reliable classification results (87% and 88% overall accuracies) with a

simple and an extended classification scheme were reached for the last image (2008), having

originally higher ground spatial resolution (0.5 m/pixel) and better image quality according

to the digital image acquisition type.

Since the above described classification methods were conducted on image scenes based on

locally selected training samples, it was foreseen to analyse training-image based automated

applications for a spatially and temporally extended analysis of the same wetland area.
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The mapping of different vegetation habitats defined and classified on the training image

was not feasible based on transferred classification algorithms applied previously. Neverthe-

less, concerning spatial transferability, another classification method, the decision tree (DT,

firstly tested on the training site) with the same spectral-textural feature set was found to

be transferable for the detection of Hybrid poplar stands under those conditions, that the

selected samples in the training image are characterized by the Forest Stand Type of Hybrid

poplar (based on silvicultural reference data), although the user-defined Hybrid poplar class

includes mixed stands, e.g., Domestic-poplar-Hybrid poplar FST as well.

Regarding the temporal transferability, it was assessed by Jeffries-Matusita statistical dis-

tance calculations based on training samples from different aerial images (2008: NIR-G-

B,1999: NIR-R-G) that similarities (Low vegetation) and differences (e.g., Hybrid poplar

class) in vegetation patterns from distinct years are detectable by a stable textural param-

eter, GLCM standard deviation (STDEV), which is also suggested for latter analysis in

decision tree transfer. Transferring the training-image (2008) based decision tree with the

feature set of GLCM STDEV and vegetation index (GreenNDVI), computed for a gener-

alized classification scheme (high and low vegetation), gave 99% overall accuracy for the

target scene (1999). By ignoring the vegetation-index-related decision node in the originally

computed DT for 2008, the transferred decision tree classifier resulted in the same classifi-

cation performance for the scene of 1999 with the single use of GLCM STDEV. Hereby, it

was verified that GLCM STDEV is a stable and significant parameter in temporal image

classification. Beyond that, based on the decision tree structure computed based on the 1999

NIR-R-G image, GLCM STDEV is proposed as a single descriptor for the separation of low

and high vegetation classes (like density slicing method for a single-band image) without

the use of the earlier applied image classification algorithms, applied to aerial imagery with

the same spectral band combination.

Training image-based decision tree classification was applicable for the separation of forested

(high vegetation) and non-forested (low vegetation) areas in the spatial dimension as well.

Thus, the spatial and temporal extension of a concrete classification approach was found to

be feasible and is suggested for spatio-temporal monitoring studies where a rapid assessment

of a generalized vegetation cover is necessary.



Chapter 8

Conclusions & future research

8.1 Conclusions

High resolution aerial imagery based automated image analysis provides an objective method

for the understanding of vegetation patches and processes, spatial and temporal differences

compared to the field investigation based vegetation monitoring. The above-described anal-

ysis results can serve as a supportive tool for the work of botanical and silvicultural surveyors

producing and updating vegetation and forest habitat maps.

Based on the applied imagery (with the spatial resolution of 1.25 m/pixel) and the avail-

able botanical and silvicultural data significant vegetation classes were identified for the

training stage and for the selection of reference samples during the supervised classification.

However, the applied aerial images and the ancillary (botanical and silvicultural) data were

temporally different, where the reliability of the applied vegetation classification scheme

could be problematic. Beyond that, additional forest stand based information (e.g., age)

would have enhanced the investigations with the application of age structure analysis.

Generally the use of colour-infrared aerial images is essential, since the vegetation indices

(e.g., NDVI, BlueNDVI, GreenNDVI) provide a concrete separability from water bodies,

enhance the separation of complex vegetation habitats and are also important for the auto-

mated detection of Hybrid poplar stands and for the separation of high and low vegetation

in NIR-G-B images (2008).
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It is concluded that decision tree transfer methods can be effective for the rapid assessment

of Hybrid poplar vegetation cover applied to CIR aerial images from the same aerial image

acquisition, covering the same riparian wetland with similar forest cover. Furthermore, by

decision tree transfer the separation of forested (high vegetation) and non-forested (low

vegetation) areas can be speeded up for a spatio-temporal monitoring, based on CIR aerial

imagery.

The application of Jeffries-Matusita statistical separability calculations is vital for feature

space reduction and considerable for latter investigations where the significant textural pa-

rameters are to be found in a one-year and in a multi-temporal image analysis.

The applied accuracy assessment method proved that vegetation classification accuracies for

the 20 m×20 m image segments were higher compared to the classification of irregular image

objects from the multi-resolution segmentation. However, accuracy measures were calculated

from the 20 m×20 m square samples as reference samples, not analysing vegetation habitat

borders. Therefore, a more specific accuracy assessment would be needed.

8.2 Future research

By analysing most recent imagery and detailed reference information collected in the same

time would ensure the definition of a more accurate classification scheme and a more reliable

accuracy assessment applied to the vegetation classification. Furthermore, if the detailed

silvicultural reference information provides reliable stand age information, automated aerial

image analysis has the potential for building an optimal vegetation/forest mapping method

concentrating on the combination of species composition and age structure.

Applying a generalized classification scheme with forested and non-forested (possibly divided

into the classes of bare soil, herb/grass and shrub) sites to HR aerial images with MR-

segments can potentially provide accurate habitat delineation for a rapid assessment of

riparian wetlands. An appropriate comparison to the analysis of medium resolution satellite

images, e.g., Landsat (Kollár, 2010), would emerge the significance of HR imagery based

applications and its applicability for more accurate biomass estimation.

Based on an analogue NIR-R-G aerial image (1999) textural parameter was found as a

more significant descriptor for the separation of high and low vegetation, in contrast to the
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recent (2008) digital imagery with the NIR-G-B spectral band combination. Nevertheless,

the analysis of further imagery is needed for the verification of this assumption.

Automated image analysis techniques developed in the current research could complement

a recent research activity, related to the INMEIN (“Innovative methods for monitoring

and inventory of Danube floodplain forests based on 3D technologies of remote sensing”)

project as a Hungarian-Slovakian Cross-border Cooperation project, where actual aerial

photography (2013) is to be analysed and potentially combined with the analysis of airborne

laser scanning data presented in Király and Brolly (2013).

Moreover, testing the presented aerial image classification methods to other Danubian flood-

plains (e.g., Gemenc in Hungary, Csallóköz in Slovakia, Danube Floodplain National Park

in Austria) or other areas with similar vegetation (forest) cover could prove their universal

applicability for vegetation mapping purposes.



Chapter 9

Theses

1. The class description based fuzzy algorithm as a supervised image classifier, applied to

segmented aerial images from different years, provides the best vegetation classification

result, if the input parameter set includes spectral and textural parameters, not only

spectral or only textural features. Based on the accuracy analysis in the present

research, the following parameters provide the best results: GLCM (Grey Level Co-

occurrence Matrix) standard deviation, GLCM contrast, GLCM mean, GLDV (Grey

Level Difference Vector) entropy, vegetation index.

2. It was proved, that a decision tree classifier with a spectral-textural parameter set,

developed on a segmented CIR aerial image for the detection of the Hybrid poplar

class, can be transferred spatially to other areas.

The transfer can be successful only, if the training samples belong entirely to the

Hybrid poplar Forest Stand Type (FST, FATI1 code in the Hu. silvicultural clas-

sification scheme, FATI1:NNY). Using other mixed FSTs as training samples, e.g.,

Domestic poplar-Hybrid poplar (FATI1:NNY-HNY), although being predominantly

populated with Hybrid poplar species (Populus x euramericana ’Pannonia’), leads to

classification errors. The developed method can be used for rapid forest inventories

using CIR aerial imagery, focusing on the assessment of Hybrid poplar stands.

3. Based on a systematic Jeffries-Matusita class separability analysis, the GLCM stan-

dard deviation was found to be a stable textural parameter, applicable for the 20m×

20m (16×16 pixel) square sample-based evaluation of vegetation pattern similarities
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and differences in CIR aerial images acquired in different years with different tech-

niques but having the same geometric resolution (1.25 m/pixel).

4. Accuracy analysis of image processing results proved that a decision tree classifier with

its spectral-textural parameter set, developed on a most recent CIR aerial image, can

be transferred for the analysis of an older image of the same area for the separation

of high and low vegetation. The images need to have the same spatial resolution and

include the near-infrared band.

5. It was proved that the use of GLCM standard deviation as a textural parameter is

sufficient for the separation of high and low vegetation classes based on aerial imagery

with the NIR-R-G spectral band combination.

6. On segmented CIR aerial imagery with common spatial resolution, but from different

years and sites of the same wetland it was proved that vegetation can be automatically

classified into forested and non-forested areas with a most recent training image-based

decision tree classifier. This method provides a rapid assessment technique based on

object-based aerial image analysis, which is spatially and temporally transferable, in

order to map the cover of high and low vegetation areas often required in environmental

modelling and monitoring studies.



Appendix A

Aerial Images (1999-2008)

Figure A.1: CIR (NIR-R-G) orthophoto about the test site of Dunaremete from 1999.
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Figure A.2: RGB orthophoto about the test site of Dunaremete from 2005.

Figure A.3: CIR (NIR-G-B) orthophoto about the test site of Dunaremete from 2008.



Appendix B

Ancillary Data

Figure B.1: Complete habitat map from 2004 based on the survey of the Fertő-Hanság
National Park, as part of the National Biodiversity Monitoring System
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Figure B.3: Silvicultural data (Forest Stand Type) about the three test sites.



Appendix C

Feature separability analysis
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