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Symbols and Abbreviations 

bend1MOE: dynamic modulus of elasticity calculated from bending 
vibration in mode number 1 [GPa] 

CKDR: concentrated knot diameter ratio 
CKDRE: concentrated knot diameter ratio on edge 
Damp.: logarithmic decrement (Λ) x 1000 
Elarch: predicting formula of the static modulus of elasticity of 

larch [GPa] 
Epredicted: predicting formula of the static modulus of elasticity 

[GPa] 
Espruce: predicting formula of the static modulus of elasticity of 

spruce 
KAR: knot area ratio 
KARE: knot area ratio on edge 
long1MOE: dynamic modulus of elasticity calculated from 

longitudinal vibration in mode number 1 [GPa] 
MC moisture content [%] 
R: correlation coefficient 
Static MOE static modulus of elasticity [GPa] 

σlarch: predicting formula of bending strength of larch [MPa] 

σpredicted: predicting formula of bending strength [MPa] 

σspruce: predicting formula of bending strength of spruce [MPa] 

σ��: standard error 
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1 Introduction 

The non-destructive testing of wood has decades of history. From 
very early on, research projects usually aimed at the estimation of strength 
properties. The goal of the non-destructive testing of solid wood is to 
measure quickly and precisely the parameters of logs or lumbers that are in 
connection with the mechanical properties. These physical features, 
sometimes referred to as non-destructive parameters, then can be related to 
strength and elasticity via mathematical, statistical models with good 
accuracy.  

1.1 Objective 

The general research objectives included the evaluation and selection 
of those non-destructive parameters that have the strongest influence on the 
static bending strength and modulus of elasticity. Thus, based on the 
measurements of these parameters the estimation of strength and stiffness 
properties with the possible highest precision may be achieved.  

During the course of the project, I have performed non-destructive 
and destructive tests on 1307 pieces of coniferous specimens. The 
characteristic dimensions of the spruce (Picea abies) and larch (Larix 
decidua) planks were 5×10 cm in cross sections and 2 – 6 m in length.  

The measured parameters included growth ring structure related 
measurements: such as average growth ring width and maximum growth 
ring width. Additionally, several knot parameters like knot area ratio, knot 
area ratio on edge, knot diameter ratio, knot diameter ratio on edge were 
also assessed. Furthermore, different vibration frequencies helped to 
evaluate the dynamic moduli of elasticity, damping characteristics and 
densities. After measuring the non-destructive parameters, we performed a 
4-point proof load test measuring the static modulus of elasticity and the 
bending strength according to MSZ EN 408. 

1.2 Actuality of the Subject 

From 2010, instead of the Hungarian standard MSZ 15025 (Design 
of load bearing structures of buildings in Hungary), the timber structures 
have to be sized and designed according to Eurocode 5 (Design of timber 
structures) that is already in force. 
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Eurocode 5 specifies the use of strength graded structural lumber and 
the grading follows the recommendations of the MSZ EN 338 standard. 
Since 1994 MSZ EN 338 is a naturalized standard in Hungary, and it has 
been modified several times. The current version was published in 2010. 
The MSZ EN 338 standard divides wood species into two groups: group C 
includes coniferous species and poplars. Group D includes deciduous 
species, within which the standard determines different strength classes. It 
significantly differs from the present Hungarian practices, as the ‘old’ 
Hungarian standard differentiates 3 wood species (low density angiosperms, 
high density angiosperms, gymnosperms) and 4 strength classes (0, I, II, 
III), while the ‘new’ European standard differentiates 2 groups of wood 
species (C and D) and 12 strength classes in group C and 6 strength classes 
in group D. Therefore, the developed data base may aid designers to 
conform the new standard.  

2 Materials and Methods  

2.1 Materials 

During my measurements, I differentiated 3 groups according to 
species and growth areas. The groups were as follows: 

Group I: spruce from Slovakia 
Group II: larch from Russia 
Group III: larch from Slovakia 
Table Table 2.1 contains the specifications of lumbers involved in 

the investigations.  
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Table 2.1: Division of Specimen Groups 

  

Cross-
section (cm) 

Length 
[m] 

Species Growth 
area 

Number of specimens [pcs] 

Non-destructive Destructive 

I. 5x10 2 spruce Slovakia 432 432 

II. 5x10 2 larch Russia 432 432 

III.  

5x10 2 

larch Slovakia 

143 143 

5x10 4 41 0 

5x10 4 51 51 

7,5x15 6 50 0 

7,5x15 3 100 100 

10x10 4 58 58 

Total:  1307 1216 

Source: own design 

Out of the evaluated 1307 specimen, 1216 were tested destructively 
as well. The difference in numbers is due to that lumber in line 4 and 6 of 
the table were of 4 and 6 m. First I performed non-destructive tests on the 4 
and 6 m long specimens, then cutting them into two, I repeated the non-
destructive tests, and finally I performed the static measurements. It was 
necessary for examining the size effect. In all cases the materials were sawn 
planks or beams in cross sections.  

2.2 Non-destructive Measurements 

The non-destructive testing and evaluation included the following 
procedures, measurements and visual assessments:  

• dynamic modulus of elasticity calculated from bending 
vibration in mode number 1 

• dynamic modulus of elasticity calculated from longitudinal 
vibration in mode number 1 

• logarithmic decrement 

• different knot parameters 
o knot area ratio (GTA) 
o knot area ratio on edge (SZGTA) 
o concentrated knot diameter ratio (CKDR) 
o concentrated knot diameter ratio on edge (SZCKDR) 
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2.3 Destructive tests 

Destructive tests were performed for: 

• static modulus of elasticity  

• bending strength 
The determination of bending strength and modulus of elasticity 

happened by 4-point bending, according to the specifications of the MSZ 
EN 408 standard. 

3 Summary of the Results 

The ultimate purpose of my research was to determine the 
mechanical properties of the lumber by non-destructive methods as 
precisely as possible. Furthermore, finding the best algorithms to measure 
and to estimate these properties were also targeted. The most important 
parameters among the mechanical properties are the modulus of elasticity 
and the bending strength for structural design. I statistically analysed the 
measured data using the STATISTICA software and determined those 
formulas that resulted in the best correlation and the smallest standard error. 
Groups in Table Table 2.1 were separately investigated.  In this Theses-
book, only the best estimating/predicting formulas are discussed. 

3.1 Results of Group I 

Group I contained 5×10 cm cross-section and 2 m long spruce planks 
from Slovakia, having13±2% moisture content. 

The best model for estimating the static modulus of elasticity was 
provided by using the dynamic bending modulus of elasticity and the 
damping, according to the equation below: 

 Epredicted = 0,863 ∙ bend1MOE – 0,043 ∙ Damp. + 2,512 [3.1] 

The relationship between the estimated and the measured static 
modulus of elasticity can be seen on Figure Figure 3.1. The standard error 
of prediction was of 0,51 GPa. 
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Figure 3.1: Relationship between estimated and static modulus of elasticity  

Source: own design 

The best formula for approximation of bending strengths from the 
non-destructive parameters turned out to be as follows: 

 σpredicted = 2,946·bend1MOE – 16,103·KAR – 10,423·KARE –   
 – 0,547·Damp. + 29,760  [3.2] 

Figure Figure 3.2 shows the relation between the estimated and the 
actual bending strength. The detected standard error of prediction was 6,82 
MPa. 
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Figure 3.2: Relationship between estimated and measured bending strength 

Source: own design 

3.2 Results of Group II 

Group II contained 5×10 cm cross-section and 2 m long Russian 
larch planks, conditioned similarly to that of group I to 13±3% MC. 

For this group, the best prediction model of the static modulus of 
elasticity involved the dynamic bending modulus of elasticity and the 
CKDR. The resultant regression equation is as follows: 

 Epredicted = 0,937 ∙ bend1MOE – 1,683 ∙ CKDR + 0,536 [3.3] 

Figure Figure 3.3 shows the relationship between the estimated and 
the static modulus of elasticity in bending. The standard error of prediction 
was about 0,75 GPa. 
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Figure 3.3: Relationship between estimated and static modulus of elasticity 

Source: own design 

The equation, to approximate the bending strength includes the 
bending vibration parameter with the following form:  

 σpredicted = 3,909∙bend1MOE – 43,676∙CKDR + 10,191 [3.4] 

Figure Figure 3.4 shows the relation between the estimated and the 
actual bending strength, with 11,62 MPa standard error of prediction. 
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Figure 3.4: Relationship between estimated and measured bending strength 

Source: own design 
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Figure 3.5: Relationship between estimated and the measured modulus of elasticity 

of spruce and of larch 
Source: own design 

In Figure Figure 3.5 Eluc and Evörös represent the linear regression 
equations for modulus of elasticity of spruce and larch, respectively. These 
linear models (Eqs. [3.5] and [3.6]) were as follows: 

520,111797,0 +⋅= MOEongEspruce  [3.5] 

317,011859,0 +⋅= MOEongElarch  [3.6] 

Eluc ± σ��   and Evörös ± σ��  are the distances of ± 1 standard error 

from the predicted values. The values of σ��  for spruce and larch are ±0,657 

GPa and ±0,911 GPa, respectively.  
The diagrams start from 5 GPa, because I plot the values only 

throughout that domain in which I performed measurements (5-21GPa). The 
interpretation of the graph is justifiable from the 7 GPa value. The MSZ EN 
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338 specifies that structural wood having less than 7 GPa MOE is 
substandard and needs to be rejected. The deviation patterns are partly 
covering each other. In addition from 7 GPa the difference of the two 
estimated values is only 0,77 GPa, which is covered by the error of the two 
estimates. Moving towards the higher values the difference of the two 
values practically disappears. 

The estimated bending strength values demonstrated similar patterns 
(Fig. 3.6). 

 
Figure 3.6: Relationship between estimated and measured bending strength of spruce 

and of larch 
Source: own design 
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Similarly to that of MOE, σluc ± σ��  and σvörös ± σ��  are the 

distances of ± 1 standard error from the predicted values. The numerical 
values are ±7,760 MPa for bending strength of spruce and ±14,056 MPa for 
larch. 

Again, I determined both equations by linear regression analysis, 
using only the modulus of elasticity calculated from the longitudinal 
vibration (i.e., long1MOE). Likewise, plots deal with the 5-21 GPa 
independent variable domain. The deviation patterns are covering each 
other well enough, here too. In case of higher strength values they slightly 
deviate from each other, but this value is still inside the margin of error. The 
highest difference between the estimated values does not exceed 12 MPa. 

According to the MSZ EN 338 standard, conifers belong to one 
group (group D). However, the machine stress rating of structural lumber is 
regulated by the MSZ EN 14081standard. The specifications require the 
evaluation of several hundreds of specimens by species and growing sites. 
Thus, the grading is very expensive, because it based on the tests results of 
more than a thousand specimens.  

During this research two different species from several growing sites 
were examined. Results confirmed that the developed prediction equations 
do not differ significantly.  

3.4 Results of Group III 

In Group III, I tested planks and beams of different cross-sections 
and lengths at 12±4% MC. The purpose of these evaluations was to 
investigate the size effects on structurally dimensioned elements. Table 
Table 2.1 contains the sectional dimensions and sample sizes. The 
comparison of small scale (5x10 cm and 2 m) and structural size beams and 
lumbers may have significance in safe and economic design. 

First, the non-destructive parameters were assessed on full size 
elements, followed by destructive static bending. The 4 and 6 m long 
specimens were cut half in length, measured for dynamic MOE, that were 
calculated from the longitudinal vibration (long1MOE) for both prior and 
after halving. The bending strength and MOE were assessed in accordance 
with the relevant standard on the half-length specimens. Because the full 
size specimens were not tested destructively, the dynamic modului of 
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elasticity were compared. Results of these analyses are represented by the 
box-plot diagrams (Fig. 3.7). 

 

 
Figure 3.7: Mean, deviation, minimum and maximum of the mechanical properties 

Source: own design 
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The upper and lower margins of the boxes in Figure Figure 3.7 show 
the deviation around the mean, the thin lines show the minimum and 
maximum values. Numbers in parenthesis denote sample sizes. 

Results confirmed that no size effect exists among the examined 
length and cross-sectional dimension for Slovakian larch. The measured 
mean values are very comparable and the spread of data is similar to each 
other.  

This encourages the use of mechanical properties, determined on 
short and smaller cross sectional specimens, during the design of full size 
structural elements.   

4 Summary 

Throughout the course of my research, I have performed non-
destructive and destructive measurements on 1307 pieces of spruce and 
larch planks and beams of different cross-section and length. The 
characteristic dimensions were 5×10 cm cross section and 2 m length. 

The measured parameters included – among others – growth ring 
structure related measurements such as the so-called average growth ring 
width, maximum growth ring width, several knot parameters such as the so-
called knot area ratio, knot area ratio on edge, knot diameter ratio, knot 
diameter ratio on edge, dynamic moduli of elasticity determined by 
different vibration frequencies, so-called bending and longitudinal 
vibrations, damping, moisture content and density. 

Among the determined indicators damping (logarithmic decrement) 
and Knot Area Ratio on edge introduced by me were proved to be the best 
estimate parameters. Using the best prediction formula, the static modulus 
of elasticity was forecasted with a standard error of ±0,51 GPa and the 
bending strength of ±6,82 MPa in case of spruce. The static modulus of 
elasticity was estimated with a standard error of ±0,75 GPa and the bending 
strength of ±11,62 MPa in case of larch.  

Additionally, the results of this research confirmed that the data of 
the tests on real size smaller specimens (5×10 cm cross-section, 2 m long) 
can be used on larger cross-section and length as well (5×10 cm cross-
section, 4 m long; 7,5×15 cm cross-section, 3 and 6 m long; 10×10 cm 
cross-section, 4 m long). The size effect proved to be negligible.  
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One of the noteworthy outcome of this work is that the determined 
formulas to Siberian larch and Slovak spruce do not deviate from each other 
significantly, so combining the species according to MSZ EN 338 (that is 
every softwood species belongs to one group – Group C) is reasonable, but 
the requirement of MSZ EN 14081 that specifies the differentiation 
according to species and growth area seems to be unsubstantiated. 
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5 Theses 

1. thesis 

I derived an empiric formula to estimate the static modulus of 
elasticity (Epredicted). I found that besides the dynamic modulus of elasticity 
calculated from the frequency of bending vibration in mode number 1 
(bend1MOE), the logarithmic decrement measured in mode number 1 
(Damp.) as an independent parameter helps in estimating the static modulus 
of elasticity (Epredicted) the most efficiently in case of 5×10 cm cross-section, 
2 m long spruce planks, at 13±2% moisture content.  

 Epredicted = 0,863 ∙ bend1MOE – 0,043 ∙ Damp. + 2,512 [5.1] 
 (16) (9) (374) 

Equation [5.1] can estimate the static modulus of elasticity with a 
standard error of 0,51 GPa in the 5-18 GPa domain. The numbers in 
parentheses under the coefficients of the formula show the standard errors 
of the given parameter (the digits are written according to the place values). 

2. thesis 

I derived an empiric formula to estimate the static modulus of 
elasticity (Epredicted). I found that besides the dynamic modulus of elasticity 
calculated from the frequency of longitudinal vibration in mode number 1 
(long1MOE), the Concentrated Knot Diameter Ratio on Edge (CKDRE on 
edge) determined by me as an independent parameter helps in estimating 
the static modulus of elasticity (Epredicted) the most efficiently in case of 
5×10 cm cross-section, 2 m long spruce planks, at13±2% moisture content.  

 Epredicted = 0,763 ∙ long1MOE – 1,382 ∙ CKDRE + 2,214 [5.2] 
 (14) (229) (191) 

This formula can estimate the static modulus of elasticity with a 
standard error of 0,62 GPa in the 5-18 GPa domain. The numbers in 
parentheses under the coefficients of the formula represents the same as 
described above. 
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3. thesis 

I derived an empiric formula to estimate the bending strength 
(σpredicted). I found that besides the dynamic modulus of elasticity, calculated 
from the frequency of bending vibration in mode number 1 (bend1MOE), 
the logarithmic decrement measured in mode number 1 (Damp.) as an 
independent parameter helps in estimating the bending strength (σpredicted) 
the most efficiently in case of 5×10 cm cross-section, 2 m long spruce 
planks, at 13±2% moisture content.  

 σpredicted = 3,265 ∙ bend1MOE – 0,826 ∙ Damp. + 28,414 [5.3] 
 (198) (108) (4,390) 

This formula can estimate the bending strength with a standard error 
of 7 MPa in the 15-80 MPa domain. Standard errors of the parameters are in 
parentheses. 

4. thesis 

I derived an empiric formula to estimate the bending strength 
(σpredicted). I found that besides the dynamic modulus of elasticity calculated 
from the frequency of longitudinal vibration in mode number 1 
(long1MOE), the Concentrated Knot Diameter Ratio (CKDR) as an 
independent parameter helps in estimating the bending strength (σpredicted) 
the most efficiently in case of 5×10 cm cross-section, 2 m long spruce 
planks of 13±2% moisture content.  

 σpredicted = 3,160 ∙ long1MOE – 24,122 ∙ CKDR + 10,938 [5.4] 
 (153) (2,914) (2,021) 

This formula can estimate the bending strength with a standard error 
of 7,14 MPa in the 15-80 MPa domain. The standard errors of the given 
parameter are in parentheses. 
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5. thesis 

I derived an empiric formula to estimate the bending strength 
(σpredicted). I found that besides the dynamic modulus of elasticity calculated 
from the frequency of bending vibration in mode number 1 (bend1MOE), 
the logarithmic decrement measured in mode number 1 (Damp.), the Knot 
Area Ratio (KAR) and the Knot Area Ratio on Edge (KARE) as 
independent parameters in the empiric formula help in estimating the 
bending strength (σpredicted) with the smallest error in case of 5×10 cm cross-
section, 2 m long spruce planks, at 13±2% moisture content. 

σpredicted = 2,946∙bend1MOE – 16,103∙KAR – 10,423∙KARE –  
 (213) (4,219) (3,499)

   – 0,547∙Damp. + 29,760  [5.5] 
 (137) (5,011) 

The above formula can estimate the bending strength with a standard 
error of 6,82 MPa in the 15-80 MPa domain. The numbers in parentheses 
under the coefficients of the formula show the standard errors of the given 
parameter (the digits are written according to the place values). 

6. thesis 

I derived an empiric formula to estimate the static modulus of 
elasticity (Epredicted). I found that besides the dynamic modulus of elasticity 
calculated from the frequency of longitudinal vibration in mode number 1 
(long1MOE), the Concentrated Knot Diameter Ratio (CKDR) as an 
independent parameter helps in estimating the static modulus of elasticity 
(Epredicted) the most efficiently in case of 5×10 cm cross-section, 2 m long 
larch planks, at 13±3% moisture content.  

 Epredicted = 0,819 ∙ long1MOE – 1,981 ∙ CKDR + 1,158 [5.6] 
 (19) (404) (306) 

This formula can estimate the static modulus of elasticity with a 
standard error of 0,88 GPa in the 6-21 GPa domain. The numbers in 
parentheses under the coefficients of the formula show the standard errors 
of the given parameter (the digits are written according to the place values). 
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